D. Castronovo
Elettra Sincrotrone Trieste
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Castronovo.
Nature Photonics | 2012
E. Allaria; Roberto Appio; L.Badano; William A. Barletta; S.Bassanese; S. G. Biedron; A.O.Borga; E.Busetto; D. Castronovo; Paolo Cinquegrana; S. Cleva; D.Cocco; M.Cornacchia; P. Craievich; Ivan Cudin; G.D'Auria; M.Dal Forno; M.B. Danailov; R.De Monte; G.De Ninno; Paolo Delgiusto; Alexander Demidovich; S. Di Mitri; B. Diviacco; Alessandro Fabris; Riccardo Fabris; William M. Fawley; Mario Ferianis; Eugenio Ferrari; S.Ferry
Researchers demonstrate the FERMI free-electron laser operating in the high-gain harmonic generation regime, allowing high stability, transverse and longitudinal coherence and polarization control.
Nature Communications | 2013
E. Allaria; Filippo Bencivenga; Roberto Borghes; Flavio Capotondi; D. Castronovo; P. Charalambous; Paolo Cinquegrana; M.B. Danailov; G. De Ninno; Alexander Demidovich; S. Di Mitri; B. Diviacco; D. Fausti; William M. Fawley; Eugenio Ferrari; L. Froehlich; D. Gauthier; Alessandro Gessini; L. Giannessi; R. Ivanov; M. Kiskinova; Gabor Kurdi; B. Mahieu; N. Mahne; I. Nikolov; C. Masciovecchio; Emanuele Pedersoli; G. Penco; Lorenzo Raimondi; C. Serpico
Exploring the dynamics of matter driven to extreme non-equilibrium states by an intense ultrashort X-ray pulse is becoming reality, thanks to the advent of free-electron laser technology that allows development of different schemes for probing the response at variable time delay with a second pulse. Here we report the generation of two-colour extreme ultraviolet pulses of controlled wavelengths, intensity and timing by seeding of high-gain harmonic generation free-electron laser with multiple independent laser pulses. The potential of this new scheme is demonstrated by the time evolution of a titanium-grating diffraction pattern, tuning the two coherent pulses to the titanium M-resonance and varying their intensities. This reveals that an intense pulse induces abrupt pattern changes on a time scale shorter than hydrodynamic expansion and ablation. This result exemplifies the essential capabilities of the jitter-free multiple-colour free-electron laser pulse sequences to study evolving states of matter with element sensitivity.
Journal of Synchrotron Radiation | 2015
E. Allaria; L. Badano; S. Bassanese; Flavio Capotondi; D. Castronovo; Paolo Cinquegrana; M.B. Danailov; G. D'Auria; Alexander Demidovich; R. De Monte; G. De Ninno; S. Di Mitri; B. Diviacco; William M. Fawley; Mario Ferianis; Eugenio Ferrari; G. Gaio; D. Gauthier; L. Giannessi; F. Iazzourene; Gabor Kurdi; N. Mahne; I. Nikolov; F. Parmigiani; G. Penco; Lorenzo Raimondi; P. Rebernik; Fabio Rossi; Eléonore Roussel; C. Scafuri
FERMI is a seeded free-electron laser (FEL) facility located at the Elettra laboratory in Trieste, Italy, and is now in user operation with its first FEL line, FEL-1, covering the wavelength range between 100 and 20 nm. The second FEL line, FEL-2, a high-gain harmonic generation double-stage cascade covering the wavelength range 20-4 nm, has also completed commissioning and the first user call has been recently opened. An overview of the typical operating modes of the facility is presented.
Optics Express | 2013
Benoı̂t Mahieu; E. Allaria; D. Castronovo; M.B. Danailov; Alexander Demidovich; Giovanni De Ninno; Simone Di Mitri; William M. Fawley; Eugenio Ferrari; Lars Fröhlich; D. Gauthier; L. Giannessi; N. Mahne; G. Penco; Lorenzo Raimondi; S. Spampinati; C. Spezzani; Cristian Svetina; M. Trovo; Marco Zangrando
We present the experimental demonstration of a method for generating two spectrally and temporally separated pulses by an externally seeded, single-pass free-electron laser operating in the extreme-ultraviolet spectral range. Our results, collected on the FERMI@Elettra facility and confirmed by numerical simulations, demonstrate the possibility of controlling both the spectral and temporal features of the generated pulses. A free-electron laser operated in this mode becomes a suitable light source for jitter-free, two-colour pump-probe experiments.
IEEE Transactions on Nuclear Science | 2015
P. Craievich; Marco Petronio; S. G. Biedron; D. Castronovo; Massimo Dal Forno; Simone Di Mitri; Nicolas Faure; Daniele La Civita; G. Penco; Luca Rumiz; Luca Sturari; Defa Wang
In next-generation light sources, high-brightness electron beams are used in a free-electron laser configuration to produce light for use by scientists and engineers in numerous fields of research. High-brightness beams are described for such light sources as having low transverse and longitudinal emittances, high peak currents, and low slice emittance and energy spread. The optimal generation and preservation of such high-brightness electron beams during the acceleration process and propagation to and through the photon-producing element is imperative to the quality and performance of the light source. To understand the electron beams phase space in the accelerating section of a next-generation light source machine, we employed radio-frequency cavities operating in a deflecting mode in conjunction with a magnetic spectrometer and imaging system for both low (250 MeV) and high (1.2 GeV) electron energies. This high-resolution, high-energy system is an essential diagnostic for the optimization and control of the electron beam in the FERMI light source generating fully transversely and longitudinally coherent light in the VUV to soft x-ray wavelength regimes. This device is located at the end of the linear accelerator in order to provide the longitudinal phase space nearest to the entrance of the photon-producing beam-lines. Here, we describe the design, fabrication, characterization, commissioning, and operational implementation of this transverse deflecting cavity structure diagnostic system for the high-energy (1.2 GeV) regime.
ieee particle accelerator conference | 2007
M. Svandrlik; S. Bassanese; A. Carniel; K. Casarin; D. Castronovo; P. Craievich; G. D'Auria; R. De Monte; P. Delgiusto; S. Di Mitri; A. Fabris; R. Fabris; M. Ferianis; F. Giacuzzo; F. Iazzourene; G. Loda; M. Lonza; F. Mazzolini; D. Molaro; G. Pangon; C. Pasotti; G. Penco; L. Pivetta; Luca Rumiz; C. Scafuri; G. Tromba; A. Vascotto; R. Visintini; D. Zangrando; L. Picardi
The new full energy injector for Elettra is under construction. The complex is made of a 100 MeV linac and a 2.5 GeV synchrotron, at 3 Hz repetition rate. With the new injector top-up operation shall be feasible. In the first semester of 2007 the machine assembly has been started. Start of the commissioning is scheduled in Summer 2007, while the connection to the Storage Ring is planned in Fall. This paper reports the project status.
Proceedings of SPIE | 2013
Cristian Svetina; N. Mahne; Lorenzo Raimondi; Luca Rumiz; Marco Zangrando; E. Allaria; Filippo Bencivenga; C. Callegari; Flavio Capotondi; D. Castronovo; Paolo Cinquegrana; P. Craievich; Ivan Cudin; Massimo Dal Forno; M.B. Danailov; G.D'Auria; Raffaele De Monte; Giovanni De Ninno; Alexander Demidovich; Simone Di Mitri; B. Diviacco; Alessandro Fabris; Riccardo Fabris; William M. Fawley; Mario Ferianis; Eugenio Ferrari; Lars Froehlich; Paolo Furlan Radivo; G. Gaio; L. Giannessi
FERMI@Elettra is the first seeded VUV/soft X-ray FEL source. It is composed of two undulatory chains: the low energy branch (FELl) covering the wavelength range from 20 nm up to 100 nm, and the high energy branch (FEL2, employing a double stage cascade), covering the wavelength range from 4 nm up to 20 nm. At the end of 2012 FELl has been opened to external users while FEL2 has been turned on for the first time having demonstrated that a double cascade scheme is suitable for generating high intensity coherent FEL radiation. In this paper we will share our experience and will show our most recent results for both FERMI FELl and FEL2 sources. We will also present a brand new machine scheme that allows to perform two-colour pump and probe experiments as well as the first experimental results.
PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON SYNCHROTRON RADIATION INSTRUMENTATION – SRI2015 | 2016
E. Allaria; L.Badano; Filippo Bencivenga; C. Callegari; Flavio Capotondi; D. Castronovo; Paolo Cinquegrana; Marcello Coreno; Riccardo Cucini; Ivan Cudin; M.B. Danailov; Gerardo D’Auria; Raffaele De Monte; Giovanni De Ninno; Paolo Delgiusto; Alexander Demidovich; Simone Di Mitri; B. Diviacco; Alessandro Fabris; Riccardo Fabris; William M. Fawley; Mario Ferianis; Eugenio Ferrari; Paola Finetti; Paolo Furlan Radivo; G. Gaio; David Gauthier; Federico Gelmetti; L. Giannessi; Fatma Iazzourene
The FERMI Free Electron Laser (FEL) in Trieste, Italy operates in the extreme ultraviolet and soft x rays (EUV-SXR) wavelength range delivering high-fluence, stable, ultra-short pulses. Its unique design based on a seeded scheme and on tunable undulators allows unprecedented control of pulse parameters such as wavelength, phase, polarization, synchronization, pulse duration and implementation of multi-color FEL schemes. Both FEL-1 and FEL-2 lines with nominal wavelength range 100–20 nm and 20–4 nm, respectively, are open to users. We report on the unique features of FERMI, in particular those that have evolved beyond the original design, and on their application to pioneering experiments. We also present the upgrades that are planned to further expand the capabilities of this unique light source.
ieee particle accelerator conference | 2007
D. Zangrando; D. Castronovo; M. Svandrlik; R. Visintini
The third generation synchrotron light source ELETTRA has been in operation since 1993. A new 2.5 GeV full energy booster injector, which will replace the existing linear injector limited to a maximum energy of 1.2 GeV is now under construction. Commissioning will start this summer [1]. The paper reports on the construction of dipole, quadrupole, sextupole and steerer magnets and on the magnetic measurement results.
Proceedings of SPIE | 2015
L. Badano; Enrico Ferrari; E. Allaria; S. Bassanese; D. Castronovo; M.B. Danailov; Alexander Demidovich; G. De Ninno; S. Di Mitri; B. Diviacco; William M. Fawley; Lars Fröhlich; G. Gaio; L. Giannessi; G. Penco; S. Spampinati; C. Spezzani; M. Trovo; M. Veronese
FERMI is the first user facility based upon an externally seeded free-electron laser (FEL) that delivers a coherent and tunable UV radiation (down to 4 nm at the fundamental) in a number of different configurations. A microbunching instability (MBI) developing in the bunch compressors and in the rest of the linac can degrade the quality of the high brightness electron beam sufficiently to reduce the FEL output intensity and spectral brightness. A laser heater installed in the low energy (100 MeV) part of the FERMI accelerator increases the local energy spread to provide Landau damping against this instability. In this paper we summarize the main results obtained with the FERMI laser heater since it commissioning in 2012. We present the measurement of the reduction of the incoherent energy spread at the linac exit induced by the heating of the electron beam at the beginning of the linac. We also discuss the positive effects of such heating upon the emission of coherent optical transition radiation and the FEL performances both in terms of intensity and spectrum. Moreover, we report about results that have been used to experimentally demonstrate that for transversely uniform heating the local energy spread augmentation is characterized by a non-Gaussian distribution that can be preserved up to the FEL undulator entrance with a significant impact on the performance of high-gain harmonic generation (HGHG) FELs, especially at soft x-ray wavelengths.