D. Chatterjee
Defence Metallurgical Research Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Chatterjee.
Ultrasonics | 2018
A.K. Mukhopadhyay; D. Chatterjee; Chandan Mondal; Sony Punnose; K. Gopinath
HighlightsCharacterized the precipitate coarsening process in Ni‐base super alloy using ultrasonic techniques.Dislocation vibration model has been used to explain the variation in the second order nonlinear ultrasonic parameter.A new microstructural parameter has been identified that varies in a similar way as ultrasonic parameters.Findings are technologically useful for life assessment of safety critical components. ABSTRACT The high temperature strength of directionally solidified Ni‐base super alloy CM 247LC strongly depends on the morphology, volume fraction, size and size distribution of &ggr;′ precipitate (Ni3Al) in the FCC &ggr; matrix. The microstructure of the alloy is engineered to achieve the right combination of these parameters that provides the required high temperature strength and creep resistance. The alloy contains high volume fraction of coherent &ggr;′ precipitates having near cubic shape. High temperature exposure of gas turbine components made out of the alloy leads to coarsening of the &ggr;′ precipitates and broadening of the &ggr; matrix channel. This in turn, adversely affects the high temperature mechanical properties of the alloy. The present study endeavours to non‐destructively characterize such detrimental changes in the microstructure that controls the mechanical properties and limits the life of components. The microstructural changes of the fully heat treated alloy exposed at 980 °C for different hours (100–1200) of thermal exposure have been characterized using ultrasonic methods. Changes in microstructural parameters due to different hours of thermal exposure have been correlated with changes in ultrasonic velocity, ultrasonic attenuation coefficient and second order acoustic nonlinearity parameter. It is observed that the change in attenuation is predominantly by absorption of the ultrasonic wave due to dislocation damping in the &ggr; channels. Nonlinear ultrasonic parameter changes with thermal exposure predominantly due to the alteration of dislocation precipitate interaction. A dislocation precipitation interaction model for ultrasonic wave distortion has been used to explain the observed variation in nonlinear parameter. A microstructural parameter has been identified that varies in a similar way as ultrasonic attenuation and second order ultrasonic parameter. It is shown that variations in the acoustic non‐linearity parameter follow the trend more closely with the identified microstructural parameter.
Materials Science and Engineering A-structural Materials Properties Microstructure and Processing | 2010
D. Chatterjee; N. Hazari; Niranjan Das; R. Mitra
Materials Science and Engineering A-structural Materials Properties Microstructure and Processing | 2010
Zafir Alam; D. Chatterjee; B. Venkataraman; Vijay K. Varma; Dipak K. Das
Materials Science and Engineering A-structural Materials Properties Microstructure and Processing | 2010
Md. Zafir Alam; D. Chatterjee; S.V. Kamat; Vikram Jayaram; D.K. Das
Materials Science and Engineering A-structural Materials Properties Microstructure and Processing | 2012
Zafir Alam; D.V.V. Satyanarayana; D. Chatterjee; Rajdeep Sarkar; D.K. Das
Materials Science and Engineering A-structural Materials Properties Microstructure and Processing | 2015
Chandrakant Parlikar; D.V.V. Satyanarayana; D. Chatterjee; N. Hazari; Dipak K. Das
Materials Science and Engineering A-structural Materials Properties Microstructure and Processing | 2015
Md. Zafir Alam; D.V.V. Satyanarayana; D. Chatterjee; Rajdeep Sarkar; D.K. Das
Procedia Engineering | 2013
D. Chatterjee; N. Hazari; Niranjan Das
Materials & Design | 2017
Zafir Alam; Chandrakant Parlikar; D. Chatterjee; Dipak K. Das
Procedia Engineering | 2013
Zafir Alam; D.V.V. Satyanarayana; D. Chatterjee; Rajdeep Sarkar; D.K. Das