D.D.W. Cornelison
University of Missouri
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D.D.W. Cornelison.
Cell Stem Cell | 2009
Kathleen Kelly Tanaka; John K. Hall; Andrew Troy; D.D.W. Cornelison; Susan M. Majka; Bradley B. Olwin
Skeletal muscle satellite cells, located between the basal lamina and plasma membrane of myofibers, are required for skeletal muscle regeneration. The capacity of satellite cells as well as other cell lineages including mesoangioblasts, mesenchymal stem cells, and side population (SP) cells to contribute to muscle regeneration has complicated the identification of a satellite stem cell. We have characterized a rare subset of the muscle SP that efficiently engrafts into the host satellite cell niche when transplanted into regenerating muscle, providing 75% of the satellite cell population and 30% of the myonuclear population, respectively. These cells are found in the satellite cell position, adhere to isolated myofibers, and spontaneously undergo myogenesis in culture. We propose that this subset of SP cells (satellite-SP cells), characterized by ABCG2, Syndecan-4, and Pax7 expression, constitutes a self-renewing muscle stem cell capable of generating both satellite cells and their myonuclear progeny in vivo.
Stem Cells | 2009
Ashley L. Siegel; Kevin Atchison; Kevin E. Fisher; George E. Davis; D.D.W. Cornelison
Skeletal muscle repair and regeneration requires the activity of satellite cells, a population of myogenic stem cells scattered throughout the tissue and activated to proliferate and differentiate in response to myotrauma or disease. While it seems likely that satellite cells would need to navigate local muscle tissue to reach damaged areas, relatively little data on such motility exist, and most studies have been with immortalized cell lines. We find that primary satellite cells are significantly more motile than myoblast cell lines, and that adhesion to laminin promotes primary cell motility more than fourfold over other substrates. Using timelapse videomicroscopy to assess satellite cell motility on single living myofibers, we have identified a requirement for the laminin‐binding integrin α7β1 in satellite cell motility, as well as a role for hepatocyte growth factor in promoting directional persistence. The extensive migratory behavior of satellite cells resident on muscle fibers suggests caution when determining, based on fixed specimens, whether adjacent cells are daughters from the same mother cell. We also observed more persistent long‐term contact between individual satellite cells than has been previously supposed, potential cell‐cell attractive and repulsive interactions, and migration between host myofibers. Based on such activity, we assayed for expression of “pathfinding” cues, and found that satellite cells express multiple guidance ligands and receptors. Together, these data suggest that satellite cell migration in vivo may be more extensive than currently thought, and could be regulated by combinations of signals, including adhesive haptotaxis, soluble factors, and guidance cues. STEM CELLS 2009;27:2527–2538
Journal of Cellular Biochemistry | 2008
D.D.W. Cornelison
Skeletal muscle is formed during development by the progressive specification, proliferation, migration, and fusion of myoblasts to form terminally differentiated, contractile, highly patterned myofibers. Skeletal muscle is repaired or replaced postnatally by a similar process, involving a resident myogenic stem cell population referred to as satellite cells. In both cases, the activity of the myogenic precursor cells in question is regulated by local signals from the environment, frequently involving other, non‐muscle cell types. However, while the majority of studies on muscle development were done in the context of the whole embryo, much of the current work on muscle satellite cells has been done in vitro, or on satellite cell‐derived cell lines. While significant practical reasons for these approaches exist, it is almost certain that important influences from the context of the injured and regenerating muscle are lost, while potential tissue culture artifacts are introduced. This review will briefly address extracellular influences on satellite cells in vivo and in vitro that would be expected to impinge on their activity. J. Cell. Biochem. 105: 663–669, 2008.
Journal of Cell Biology | 2010
Addolorata Pisconti; D.D.W. Cornelison; Hugo C. Olguín; Tiffany L. Antwine; Bradley B. Olwin
Syndecan-3 is required for Notch processing by ADAM17/TACe and therefore regulates proliferation and viability of muscle satellite cells.
Journal of Cell Biology | 2014
C. Florian Bentzinger; Julia von Maltzahn; Nicolas A. Dumont; Danny A. Stark; Yu Xin Wang; Kevin Nhan; Jérôme Frenette; D.D.W. Cornelison; Michael A. Rudnicki
In addition to stimulating skeletal muscle growth and repair, Wnt7a/Fzd7 signaling increases the polarity and directional migration of myogenic progenitors and improves the efficacy of muscle stem cell therapy.
Experimental Cell Research | 2008
Katie L. Capkovic; Severin E. Stevenson; Marc C. Johnson; Jay J. Thelen; D.D.W. Cornelison
Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression.
Development | 2011
Danny A. Stark; Rowan M. Karvas; Ashley L. Siegel; D.D.W. Cornelison
During development and regeneration, directed migration of cells, including neural crest cells, endothelial cells, axonal growth cones and many types of adult stem cells, to specific areas distant from their origin is necessary for their function. We have recently shown that adult skeletal muscle stem cells (satellite cells), once activated by isolation or injury, are a highly motile population with the potential to respond to multiple guidance cues, based on their expression of classical guidance receptors. We show here that, in vivo, differentiated and regenerating myofibers dynamically express a subset of ephrin guidance ligands, as well as Eph receptors. This expression has previously only been examined in the context of muscle-nerve interactions; however, we propose that it might also play a role in satellite cell-mediated muscle repair. Therefore, we investigated whether Eph-ephrin signaling would produce changes in satellite cell directional motility. Using a classical ephrin ‘stripe’ assay, we found that satellite cells respond to a subset of ephrins with repulsive behavior in vitro; patterning of differentiating myotubes is also parallel to ephrin stripes. This behavior can be replicated in a heterologous in vivo system, the hindbrain of the developing quail, in which neural crest cells are directed in streams to the branchial arches and to the forelimb of the developing quail, where presumptive limb myoblasts emigrate from the somite. We hypothesize that guidance signaling might impact multiple steps in muscle regeneration, including escape from the niche, directed migration to sites of injury, cell-cell interactions among satellite cell progeny, and differentiation and patterning of regenerated muscle.
Skeletal Muscle | 2011
Ashley L. Siegel; Paige K Kuhlmann; D.D.W. Cornelison
BackgroundAs the resident stem cells of skeletal muscle, satellite cells are activated by extracellular cues associated with local damage. Once activated, satellite cells will re-enter the cell cycle to proliferate and supply a population of myoblasts, which will repair or replace damaged myofibers by differentiating and fusing either with an existing myofiber or with each other. There is also evidence that the orientation of cell division with respect to the myofiber may indicate or convey asymmetry in the two daughter cells. Our recent studies with time-lapse imaging of myofiber-associated satellite cells in vitro have yielded new data on the timing and orientation of satellite cell divisions, and revealed persistent differences in the behavior of daughter cells from planar versus vertical divisions.ResultsWe analyzed 244 individual fiber-associated satellite cells in time-lapse video from 24 to 48 hours after myofiber harvest. We found that initial cell division in fiber culture is not synchronous, although presumably all cells were activated by the initial trauma of harvest; that cell cycling time is significantly shorter than previously thought (as short as 4.8 hours, averaging 10 hours between the first and second divisions and eight hours between the second and third); and that timing of subsequent divisions is not strongly correlated with timing of the initial division. Approximately 65% of first and 80% of second cell divisions occur parallel to the axis of the myofiber, whereas the remainder occur outside the plane of the fiber surface (vertical division). We previously demonstrated that daughter cells frequently remain associated with each other after division or reassociate after a brief separation, and that unrelated cells may also associate for significant periods of time. We show in this paper that daughter cells resulting from a vertical division remain associated with one another several times longer than do daughters from a horizontal division. However, the total average time of association between sister cells is not significantly different from the total average time of association between unrelated cells.ConclusionsThese longitudinal characterizations of satellite cell behavior shortly after activation provide new insights into cell proliferation and association as a function of relatedness, and indicate significant and consistent heterogeneity within the population based on these metrics.
FEBS Journal | 2013
Dane K. Lund; D.D.W. Cornelison
Mammalian skeletal muscle is notable for both its highly ordered biophysical structure and its regenerative capacity following trauma. Critical to both of these features is the specialized muscle extracellular matrix, comprising both the multiple concentric sheaths of connective tissue surrounding structural units from single myofibers to whole muscles and the dense interstitial matrix that occupies the space between them. Extracellular matrix‐dependent interactions affect all activities of the resident muscle stem cell population (the satellite cells), from maintenance of quiescence and stem cell potential to the regulation of proliferation and differentiation. This review focuses on the role of the extracellular matrix in muscle regeneration, with a particular emphasis on regulation of satellite‐cell activity.
Skeletal Muscle | 2012
Nicholas H. Farina; Melissa Hausburg; Nicole Dalla Betta; Crystal Pulliam; Deepak Srivastava; D.D.W. Cornelison; Bradley B. Olwin
BackgroundSatellite cells are resident skeletal muscle stem cells responsible for muscle maintenance and repair. In resting muscle, satellite cells are maintained in a quiescent state. Satellite cell activation induces the myogenic commitment factor, MyoD, and cell cycle entry to facilitate transition to a population of proliferating myoblasts that eventually exit the cycle and regenerate muscle tissue. The molecular mechanism involved in the transition of a quiescent satellite cell to a transit-amplifying myoblast is poorly understood.MethodsSatellite cells isolated by FACS from uninjured skeletal muscle and 12 h post-muscle injury from wild type and Syndecan-4 null mice were probed using Affymetrix 430v2 gene chips and analyzed by Spotfiretm and Ingenuity Pathway analysis to identify gene expression changes and networks associated with satellite cell activation, respectively. Additional analyses of target genes identify miRNAs exhibiting dynamic changes in expression during satellite cell activation. The function of the miRNAs was assessed using miRIDIAN hairpin inhibitors.ResultsAn unbiased gene expression screen identified over 4,000 genes differentially expressed in satellite cells in vivo within 12 h following muscle damage and more than 50% of these decrease dramatically. RNA binding proteins and genes involved in post-transcriptional regulation were significantly over-represented whereas splicing factors were preferentially downregulated and mRNA stability genes preferentially upregulated. Furthermore, six computationally identified miRNAs demonstrated novel expression through muscle regeneration and in satellite cells. Three of the six miRNAs were found to regulate satellite cell fate.ConclusionsThe quiescent satellite cell is actively maintained in a state poised to activate in response to external signals. Satellite cell activation appears to be regulated by post-transcriptional gene regulation.