Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Delle Donne is active.

Publication


Featured researches published by D. Delle Donne.


Journal of Geophysical Research | 2011

The 15 March 2007 explosive crisis at Stromboli volcano, Italy: Assessing physical parameters through a multidisciplinary approach

Marco Pistolesi; D. Delle Donne; Laura Pioli; Mauro Rosi; Maurizio Ripepe

Basaltic volcanoes are dominated by lava emission and mild explosive activity. Nevertheless, many basaltic systems exhibit, from time to time, poorly documented and little-understood violent explosions. A short-lived, multiblast explosive crisis (paroxysmal explosion) occurred on 15 March 2007 during an effusive eruptive crisis at Stromboli (Italy). The explosive crisis, which started at 20:38:14 UT, had a total duration of ∼5 min. The combined use of multiparametric data collected by the permanent instrumental networks (seismic, acoustic, and thermal records) and a field survey carried out immediately after the event enabled us to constrain the eruptive dynamics and quantify physical parameters. The eruption consisted of three major pulses: In the first, lithic blocks and ash were ejected at speeds of 100–155 m/s and 130–210 m/s, respectively. The high solid load of the eruptive jet resulted in the partial collapse of the column with the formation of a small-volume pyroclastic density current. The second, 12 s long pulse emitted 2.2–2.7 × 107 kg of tephra (mass discharge rate = 1.9–2.3 × 106 kg/s), forming a 3 km high convective plume, dispersing tephra up to the west coast, and a dilute density current with limited dispersal downslope of the craters. A final, 30 s long phase formed a scoria flow with a volume of 1.5–1.7 × 104 m3 (mass discharge rate = 5.9–6.7 × 105 kg/s), a total runout of ∼200 m, and a velocity of 45 m/s. The total gas volume involved in the explosion was 1.3–1.9 × 104 m3 with an initial overpressure of 7.9 ± 0.4 MPa. We compared the 15 March 2007 event with historical paroxysms, in particular with that of 5 April 2003, which was remarkably similar.


Geological Society, London, Special Publications | 2016

Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system

D. Coppola; M. Laiolo; C. Cigolini; D. Delle Donne; Maurizio Ripepe

Abstract We describe a new volcanic hotspot detection system, named Middle InfraRed Observation of Volcanic Activity (MIROVA), based on the analysis of infrared data acquired by the Moderate Resolution Imaging Spectroradiometer sensor (MODIS). MIROVA uses the middle infrared radiation (MIR), measured by MODIS, in order to detect and measure the heat radiation deriving from volcanic activity. The algorithm combines spectral and spatial principles, allowing the detection of heat sources from 1 megawatt (MW) to more than 10 gigawatt (GW). This provides a unique opportunity to: (i) recognize small-scale variations in thermal output that may precede the onset of effusive activity; (ii) track the advance of large lava flows; (iii) estimate lava discharge rates; (iv) identify distinct effusive trends; and, lastly, (v) follow the cooling process of voluminous lava bodies for several months. Here we show the results obtained from data sets spanning 14 years recorded at the Stromboli and Mt Etna volcanoes, Italy, and we investigate the above aspects at these two persistently active volcanoes. Finally, we describe how the algorithm has been implemented within an operational near-real-time processing chain that enables the MIROVA system to provide data and infrared maps within 1–4 h of the satellite overpass.


Geophysical Research Letters | 2016

Spatially resolved SO2 flux emissions from Mt Etna

R. D'Aleo; M. Bitetto; D. Delle Donne; Giancarlo Tamburello; A. Battaglia; M. Coltelli; D. Patanè; M. Prestifilippo; M. Sciotto; A. Aiuppa

Abstract We report on a systematic record of SO2 flux emissions from individual vents of Etna volcano (Sicily), which we obtained using a permanent UV camera network. Observations were carried out in summer 2014, a period encompassing two eruptive episodes of the New South East Crater (NSEC) and a fissure‐fed eruption in the upper Valle del Bove. We demonstrate that our vent‐resolved SO2 flux time series allow capturing shifts in activity from one vent to another and contribute to our understanding of Etnas shallow plumbing system structure. We find that the fissure eruption contributed ~50,000 t of SO2 or ~30% of the SO2 emitted by the volcano during the 5 July to 10 August eruptive interval. Activity from this eruptive vent gradually vanished on 10 August, marking a switch of degassing toward the NSEC. Onset of degassing at the NSEC was a precursory to explosive paroxysmal activity on 11–15 August.


Geophysical Research Letters | 2016

Conduit dynamics and post explosion degassing on Stromboli: A combined UV camera and numerical modeling treatment

Tom D. Pering; A. J. S. McGonigle; Michael James; Giancarlo Tamburello; A. Aiuppa; D. Delle Donne; Maurizio Ripepe

Abstract Recent gas flux measurements have shown that Strombolian explosions are often followed by periods of elevated flux, or “gas codas,” with durations of order a minute. Here we present UV camera data from 200 events recorded at Stromboli volcano to constrain the nature of these codas for the first time, providing estimates for combined explosion plus coda SO2 masses of ≈18–225 kg. Numerical simulations of gas slug ascent show that substantial proportions of the initial gas mass can be distributed into a train of “daughter bubbles” released from the base of the slug, which we suggest, generate the codas, on bursting at the surface. This process could also cause transitioning of slugs into cap bubbles, significantly reducing explosivity. This study is the first attempt to combine high temporal resolution gas flux data with numerical simulations of conduit gas flow to investigate volcanic degassing dynamics.


Eos, Transactions American Geophysical Union | 2013

Modern Multispectral Sensors Help Track Explosive Eruptions

Andrew J. L. Harris; Sébastien Valade; Georgina M. Sawyer; Franck Donnadieu; Jean Battaglia; Lucia Gurioli; Karim Kelfoun; Philippe Labazuy; T. Stachowicz; Maxime Bombrun; V. Barra; D. Delle Donne; Giorgio Lacanna

Due to its massive air traffic impact, the 2010 eruption of Eyjafjallajokull was felt by millions of people and cost airlines more than U.S.


Journal of remote sensing | 2014

Hot-spot detection and characterization of strombolian activity from MODIS infrared data

D. Coppola; M. Laiolo; D. Delle Donne; Maurizio Ripepe; C. Cigolini

1.7 billion. The event has, thus, become widely cited in renewed efforts to improve real-time tracking of volcanic plumes, as witnessed by special sections published last year in Journal of Geophysical Research, (117, issues D20 and B9).


Scientific Reports | 2016

Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves

Maurizio Ripepe; G. Barfucci; S. De Angelis; D. Delle Donne; Giorgio Lacanna; Emanuele Marchetti

Identifying and characterizing strombolian activity from space is a challenging task for satellite-based infrared systems. Stromboli volcano is a natural laboratory that offers a unique opportunity for refining thermal remote-sensing applications that involve transient phenomena and small to moderate hot-spots. A new simple and fast algorithm gave us the opportunity to revisit the MODIS-derived thermal output at Stromboli volcano over the last 13 years. The new algorithm includes both night-time and daytime data and shows high performance with the detection of small-amplitude thermal anomalies (<1 MW), as well as a low occurrence of false alerts (<4%). Here, we show that the statistical distribution of volcanic radiative power (VRP; in Watts) is consistent with the detection of variable activity regimes that we subdivided into five levels of thermal activity: Very Low (VRP < 1 MW), Low (1 MW < VRP < 10 MW), Moderate (10 MW < VRP < 100 MW), High (100 MW < VRP < 1000 MW), and Very High (VRP > 1000 MW). The ‘Low’ and ‘Moderate’ thermal levels are associated with strombolian activity and reflect fluctuations of the magma level within the conduit feeding the activity at the surface. The ‘High’ level of thermal output represents the bulk thermal emissions during periods of effusive activity. The highest level (‘Very High’) was reached only during the onset of flank eruptions (28 December 2002 and 27 February 2007). We found that the retrieved thermal regimes are in general agreement with the explosive levels evaluated at Stromboli since 2005, and their correlation has been shown to be dependent on the observed activity (i.e. eruption onset, lateral flank effusion, summit overflows, strombolian activity). Our results suggest that remotely sensed thermal data provide a reliable tool for monitoring volcanic activity at Stromboli volcano.


Journal of Geophysical Research | 2017

Exploring the explosive‐effusive transition using permanent ultra‐violet cameras

D. Delle Donne; Giancarlo Tamburello; Alessandro Aiuppa; M. Bitetto; Giorgio Lacanna; R. D'Aleo; Maurizio Ripepe

Volcanic explosions release large amounts of hot gas and ash into the atmosphere to form plumes rising several kilometers above eruptive vents, which can pose serious risk on human health and aviation also at several thousands of kilometers from the volcanic source. However the most sophisticate atmospheric models and eruptive plume dynamics require input parameters such as duration of the ejection phase and total mass erupted to constrain the quantity of ash dispersed in the atmosphere and to efficiently evaluate the related hazard. The sudden ejection of this large quantity of ash can perturb the equilibrium of the whole atmosphere triggering oscillations well below the frequencies of acoustic waves, down to much longer periods typical of gravity waves. We show that atmospheric gravity oscillations induced by volcanic eruptions and recorded by pressure sensors can be modeled as a compact source representing the rate of erupted volcanic mass. We demonstrate the feasibility of using gravity waves to derive eruption source parameters such as duration of the injection and total erupted mass with direct application in constraining plume and ash dispersal models.


Earth and Planetary Science Letters | 2009

Tracing the differences between Vulcanian and Strombolian explosions using infrasonic and thermal radiation energy

Emanuele Marchetti; Maurizio Ripepe; Andrew J. L. Harris; D. Delle Donne

Understanding the mechanisms that cause effusive eruptions is the key to mitigating their associated hazard. Here, we combine results from permanent ultra-violet (UV) cameras, and from other geophysical observations (seismic very long period, thermal, and infrasonic activity), to characterize volcanic SO2 flux regime in the period prior, during, and after Strombolis August-November 2014 effusive eruption. We show that, in the two months prior to effusion onset, the SO2 flux levels are two times average level. We explain this anomalously high SO2 regime as primarily determined by venting of rapidly rising, pressurized SO2-rich gas pockets, produced by strombolian explosions being more frequent and intense than usual. We develop a procedure to track (and count), in the UV camera record, the SO2 flux pulses produced by individual explosions and puffing activity (active degassing). We find that these SO2 pulses are far more numerous (67 ± 47 events/hour) before the effusion onset than during normal activity (20 ± 15 events/hour). This observation, combined with geophysical evidence, demonstrates an elevated gas bubble supply to the shallow conduits, causing elevated explosive and puffing activity. This increase (≥0.1 m3s-1) in magma transport rate in the north-east feeding conduits finally triggers effusion onset. Active degassing remains elevated also during the effusive phase, supporting the persistence of explosive and puffing activity during the effusive eruption, deep in the volcanic conduit. Our results demonstrate that permanent UV cameras can valuably contribute to monitoring at high sampling frequency gas dynamics and fluxes, thus opening the way to direct comparison with more established geophysical observations.


Earth and Planetary Science Letters | 2013

Ash-plume dynamics and eruption source parameters by infrasound and thermal imagery: The 2010 Eyjafjallajökull eruption

Maurizio Ripepe; Costanza Bonadonna; Arnau Folch; D. Delle Donne; Giorgio Lacanna; Emanuele Marchetti; Ármann Höskuldsson

Collaboration


Dive into the D. Delle Donne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Aiuppa

University of Palermo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Laiolo

University of Florence

View shared research outputs
Top Co-Authors

Avatar

R. D'Aleo

University of Palermo

View shared research outputs
Researchain Logo
Decentralizing Knowledge