Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D Dolney is active.

Publication


Featured researches published by D Dolney.


The Astrophysical Journal | 2006

Dark Energy Constraints from the CTIO Lensing Survey

M. Jarvis; Bhuvnesh Jain; G. M. Bernstein; D Dolney

We perform a cosmological parameter analysis of the 75 deg2 CTIO lensing survey in conjunction with cosmic microwave background (CMB) and Type Ia supernovae data. For ΛCDM cosmologies, we find that the amplitude of the power spectrum at low redshift is given by σ8 = 0.81 (95% confidence level), where the error bound includes both statistical and systematic errors. The total of all systematic errors is smaller than the statistical errors, but they do make up a significant fraction of the error budget. We find that weak lensing improves the constraints on dark energy as well. The (constant) dark energy equation of state parameter, w, is measured to be -0.89 (95% c.l.). Marginalizing over a constant w slightly changes the estimate of σ8 to 0.79 (95% c.l.). We also investigate variable w cosmologies but find that the constraints weaken considerably; next-generation surveys are needed to obtain meaningful constraints on the possible time evolution of dark energy.


Monthly Notices of the Royal Astronomical Society | 2006

Baryon oscillations and dark‐energy constraints from imaging surveys

D Dolney; Bhuvnesh Jain; Masahiro Takada

Baryonic oscillations in the galaxy power spectrum have been studied as a way of probing darkenergy models. While most studies have focused on spectroscopic surveys at high redshift, large multicolour imaging surveys have already been planned for the near future. In view of this, we study the prospects for measuring baryonic oscillations from angular statistics of galaxies binned using photometric redshifts. We use the galaxy bispectrum in addition to the power spectrum; this allows us to measure and marginalize over possibly complex galaxy bias mechanisms to get robust cosmological constraints. In our parameter estimation, we allow for a weakly non-linear biasing scheme that may evolve with redshift by two bias parameters in each of 10 redshift bins. We find that a multicolour imaging survey that probes redshifts beyond one can give interesting constraints on dark-energy parameters. In addition, the shape of the primordial power spectrum can be measured to better accuracy than with the cosmic microwave background (CMB) alone. We explore the impact of survey depth, area and calibration errors in the photometric redshifts on dark-energy constraints.


Monthly Notices of the Royal Astronomical Society | 2004

Effects of halo substructure on the power spectrum and bispectrum

D Dolney; Bhuvnesh Jain; Masahiro Takada

We study the effects of halo substructure and a distribution in the concentration parameter of haloes on large-scale structure statistics. The effects on the power spectrum and bispectrum are studied on the smallest scales accessible from future surveys. We compare halo-model predictions with results based on N-body simulations, but also extend our predictions to 10-kpc scales which will be probed by future simulations. We find that weak-lensing surveys proposed for the coming decade can probe the power spectrum on small enough scales to detect substructure in massive haloes. We discuss the prospects of constraining the mass fraction in substructure in view of partial degeneracies with parameters such as the tilt and running of the primordial power spectrum.


Journal of Applied Clinical Medical Physics | 2016

Quantitative assessment of anatomical change using a virtual proton depth radiograph for adaptive head and neck proton therapy

Peng Wang; Lingshu Yin; Yawei Zhang; Maura Kirk; Gang Song; Peter H. Ahn; Alexander Lin; James C. Gee; D Dolney; Timothy D. Solberg; Richard L. Maughan; J McDonough; Boon-Keng Kevin Teo

The aim of this work is to demonstrate the feasibility of using water‐equivalent thickness (WET) and virtual proton depth radiographs (PDRs) of intensity corrected cone‐beam computed tomography (CBCT) to detect anatomical change and patient setup error to trigger adaptive head and neck proton therapy. The planning CT (pCT) and linear accelerator (linac) equipped CBCTs acquired weekly during treatment of a head and neck patient were used in this study. Deformable image registration (DIR) was used to register each CBCT with the pCT and map Hounsfield units (HUs) from the planning CT (pCT) onto the daily CBCT. The deformed pCT is referred as the corrected CBCT (cCBCT). Two dimensional virtual lateral PDRs were generated using a ray‐tracing technique to project the cumulative WET from a virtual source through the cCBCT and the pCT onto a virtual plane. The PDRs were used to identify anatomic regions with large variations in the proton range between the cCBCT and pCT using a threshold of 3 mm relative difference of WET and 3 mm search radius criteria. The relationship between PDR differences and dose distribution is established. Due to weight change and tumor response during treatment, large variations in WETs were observed in the relative PDRs which corresponded spatially with an increase in the number of failing points within the GTV, especially in the pharynx area. Failing points were also evident near the posterior neck due to setup variations. Differences in PDRs correlated spatially to differences in the distal dose distribution in the beams eye view. Virtual PDRs generated from volumetric data, such as pCTs or CBCTs, are potentially a useful quantitative tool in proton therapy. PDRs and WET analysis may be used to detect anatomical change from baseline during treatment and trigger further analysis in adaptive proton therapy. PACS number(s): 87.55‐x, 87.55.‐D, 87.57.Q‐The aim of this work is to demonstrate the feasibility of using water-equivalent thickness (WET) and virtual proton depth radiographs (PDRs) of intensity corrected cone-beam computed tomography (CBCT) to detect anatomical change and patient setup error to trigger adaptive head and neck proton therapy. The planning CT (pCT) and linear accelerator (linac) equipped CBCTs acquired weekly during treatment of a head and neck patient were used in this study. Deformable image registration (DIR) was used to register each CBCT with the pCT and map Hounsfield units (HUs) from the planning CT (pCT) onto the daily CBCT. The deformed pCT is referred as the corrected CBCT (cCBCT). Two dimensional virtual lateral PDRs were generated using a ray-tracing technique to project the cumulative WET from a virtual source through the cCBCT and the pCT onto a virtual plane. The PDRs were used to identify anatomic regions with large variations in the proton range between the cCBCT and pCT using a threshold of 3 mm relative difference of WET and 3 mm search radius criteria. The relationship between PDR differences and dose distribution is established. Due to weight change and tumor response during treatment, large variations in WETs were observed in the relative PDRs which corresponded spatially with an increase in the number of failing points within the GTV, especially in the pharynx area. Failing points were also evident near the posterior neck due to setup variations. Differences in PDRs correlated spatially to differences in the distal dose distribution in the beams eye view. Virtual PDRs generated from volumetric data, such as pCTs or CBCTs, are potentially a useful quantitative tool in proton therapy. PDRs and WET analysis may be used to detect anatomical change from baseline during treatment and trigger further analysis in adaptive proton therapy. PACS number(s): 87.55-x, 87.55.-D, 87.57.Q.


Medical Dosimetry | 2015

Adjuvant radiation therapy for bladder cancer: A dosimetric comparison of techniques

Brian C. Baumann; Kate Noa; E. Paul Wileyto; Justin E. Bekelman; Curtiland Deville; Neha Vapiwala; Maura Kirk; Stefan Both; D Dolney; A Kassaee; John P. Christodouleas

Trials of adjuvant radiation after cystectomy are under development. There are no studies comparing radiation techniques to inform trial design. This study assesses the effect on bowel and rectal dose of 3 different modalities treating 2 proposed alternative clinical target volumes (CTVs). Contours of the bowel, rectum, CTV-pelvic sidewall (common/internal/external iliac and obturator nodes), and CTV-comprehensive (CTV-pelvic sidewall plus cystectomy bed and presacral regions) were drawn on simulation images of 7 post-cystectomy patients. We optimized 3-dimensional conformal radiation (3-D), intensity-modulated radiation (IMRT), and single-field uniform dose (SFUD) scanning proton plans for each CTV. Mixed models regression was used to compare plans for bowel and rectal volumes exposed to 35% (V35%), 65% (V65%), and 95% (V95%) of the prescribed dose. For any given treatment modality, treating the larger CTV-comprehensive volume compared with treating only the CTV-pelvic sidewall nodes significantly increased rectal dose (V35% rectum, V65% rectum, and V95% rectum; p < 0.001 for all comparisons), but it did not produce significant differences in bowel dose (V95% bowel, V65% bowel, or V35% bowel). The 3-D plans, compared with both the IMRT and the SFUD plans, had a significantly greater V65% bowel and V95% bowel for each proposed CTV (p < 0.001 for all comparisons). The effect of treatment modality on rectal dosimetry differed by CTV, but it generally favored the IMRT and the SFUD plans over the 3-D plans. Comparison of the IMRT plan vs the SFUD plan yielded mixed results with no consistent advantage for the SFUD plan over the IMRT plan. Targeting a CTV that spares the cystectomy bed and presacral region may marginally improve rectal toxicity but would not be expected to improve the bowel toxicity associated with any given modality of adjuvant radiation. Using the IMRT or the SFUD plans instead of the 3-D conformal plan may improve both bowel and rectal toxicity.


Physics in Medicine and Biology | 2013

Dose perturbations by electromagnetic transponders in the proton environment.

D Dolney; J McDonough; Neha Vapiwala; James M. Metz

Surgically implanted electromagnetic transponders have been used in external beam radiotherapy for target localization and position monitoring in real time. The effect of transponders on proton therapy dose distributions has not been reported. A Monte Carlo implementation of the transponder geometry is validated against film measurements in a proton SOBP and subsequently used to generate dose distributions for transponders at different positions and orientations in the proton SOBP. The maximum dose deficit is extracted in each case. Dose shadows of up to 60% occur for transponders positioned very near the end of range of the Bragg peak. However, if transponders are positioned further than 5 mm from the end of range, and are not oriented parallel to the beam direction, then the dose deficit can be kept below 10%.


Journal of Radiation Research | 2014

Monte Carlo modeling in CT-based geometries: dosimetry for biological modeling experiments with particle beam radiation

Eric S. Diffenderfer; D Dolney; Maximilian Schaettler; Jenine K. Sanzari; J McDonough; Keith A. Cengel

The space radiation environment imposes increased dangers of exposure to ionizing radiation, particularly during a solar particle event (SPE). These events consist primarily of low energy protons that produce a highly inhomogeneous dose distribution. Due to this inherent dose heterogeneity, experiments designed to investigate the radiobiological effects of SPE radiation present difficulties in evaluating and interpreting dose to sensitive organs. To address this challenge, we used the Geant4 Monte Carlo simulation framework to develop dosimetry software that uses computed tomography (CT) images and provides radiation transport simulations incorporating all relevant physical interaction processes. We found that this simulation accurately predicts measured data in phantoms and can be applied to model dose in radiobiological experiments with animal models exposed to charged particle (electron and proton) beams. This study clearly demonstrates the value of Monte Carlo radiation transport methods for two critically interrelated uses: (i) determining the overall dose distribution and dose levels to specific organ systems for animal experiments with SPE-like radiation, and (ii) interpreting the effect of random and systematic variations in experimental variables (e.g. animal movement during long exposures) on the dose distributions and consequent biological effects from SPE-like radiation exposure. The software developed and validated in this study represents a critically important new tool that allows integration of computational and biological modeling for evaluating the biological outcomes of exposures to inhomogeneous SPE-like radiation dose distributions, and has potential applications for other environmental and therapeutic exposure simulations.


Proceedings of SPIE | 2016

Fiber optic microprobes with rare-earth-based phosphor tips for proton beam characterization

Arash Darafsheh; Alireza Kassaee; Reza Taleei; D Dolney; Jarod C. Finlay

We investigated the feasibility of using fiber optics probes with rare-earth-based phosphor tips for proton beam radiation dosimetry. We designed and fabricated a fiber probe with submillimeter resolution based on TbF3 phosphors and evaluated its performance for measurement of proton beams including profiles and range. The fiber optic probe, embedded in tissue-mimicking plastics, was irradiated with a clinical proton beam and the luminescence spectroscopy was performed by a CCD-coupled spectrograph to analyze the emission spectra of the fiber tip. By using a linear fitting algorithm we extracted the contribution of the ionoluminescence signal to obtain the percentage depth dose in phantoms and compared that with measurements performed with a standard ion chamber. We observed a quenching effect in the spread out Bragg peak region, manifested as an under-responding of the signal due to the high linear energy transfer of the beam. However, the beam profiles measurements were not affected by the quenching effect indicating that the fiber probes can be used for high-resolution measurements of proton beams profile.


Physics Research International | 2012

A New Technology for Fast Two-Dimensional Detection of Proton Therapy Beams

Robert J. Hollebeek; Mitch Newcomer; Godwin Mayers; Brian Delgado; Gaurav Shukla; Richard L. Maughan; D Dolney

The Micromesh Gaseous Structure, or Micromegas, is a technology developed for high count-rate applications in high-energy physics experiments. Tests using a Micromegas chamber and specially designed amplifiers and readout electronics adapted to the requirements of the proton therapy environment and providing both excellent time and high spatial resolution are presented here. The device was irradiated at the Roberts Proton Therapy Center at the University of Pennsylvania. The system was operated with ionization gains between 10 and 200 and in low and intermediate dose-rate beams, and the digitized signal is found to be reproducible to 0.8%. Spatial resolution is determined to be 1.1 mm (1σ) with a 1 ms time resolution. We resolve the range modulator wheel rotational frequency and the thicknesses of its segments and show that this information can be quickly measured owing to the high time resolution of the system. Systems of this type will be extremely useful in future treatment methods involving beams that change rapidly in time and spatial position. The Micromegas design resolves the high dose rate within a proton Bragg peak, and measurements agree with Geant4 simulations to within 5%.


Medical Physics | 2016

MO-FG-CAMPUS-JeP1-02: Proton Range Verification of Scanned Pencil Beams Using Prompt Gamma Imaging

Yunhe Xie; E Bentefour; Guillaume Janssens; J. Smeets; D Dolney; Lingshu Yin; L. Hotoiu; F Vander Stappen; S Avery; F O'Grady; D. Prieels; J McDonough; Timothy D. Solberg; Alexander Lin; Boon-Keng Kevin Teo

PURPOSE Prompt gammas are emitted along the proton beam path and have an emission profile correlated with the depth dose profile. In this study, the accuracy of in-vivo proton range verification using a 1-D prompt gamma camera is assessed. METHODS The 1-D camera is comprised of a tungsten slit collimator positioned in front of a linear array of LYSO scintillating crystals coupled to silicon photomultipliers. The imaged gamma profiles of individual pencil beam spots and energy layers were analyzed by determining the relative shifts from the expected gamma profiles based on analytic prediction or reference measurements. The range retrieval precision was evaluated by reproducibility measurements and by irradiation through a heterogeneous phantom composed of materials with known stopping power ratios. The camera was evaluated at clinical doses in pencil beam scanning mode on a head-and-neck phantom (HN). Two scenarios were studied: 5 mm systematic range error; and setup error of 10 mm transverse to the proton beam. RESULTS The camera range retrieval precision was 2 mm at clinical doses. For the heterogeneous phantom and HN phantom studies, the discrepancies between the analytic model and measurements were less than 2 mm for both spot and iso-energy layer analysis. For the simulated 5 mm range error, the retrieved shifts were 4.3±2.0 mm. For the 10 mm setup error, large shifts (> 4 mm) were observed for some spots due to differences in the irradiated and expected beam path from the measurements without setup error. CONCLUSION Our studies demonstrated that in-vivo proton range verification is feasible using a 1D prompt gamma camera with a 2 mm range retrieval precision. Pencil beam spot under or over ranging can be detected via comparison between measured and expected profiles.

Collaboration


Dive into the D Dolney's collaboration.

Top Co-Authors

Avatar

J McDonough

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Lin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

A Kassaee

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C Ainsley

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maura Kirk

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Neha Vapiwala

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge