Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Eric Anderson is active.

Publication


Featured researches published by D. Eric Anderson.


Cell | 2007

Ribosomal Protein S3: A KH Domain Subunit in NF-κB Complexes that Mediates Selective Gene Regulation

Fengyi Wan; D. Eric Anderson; Robert A. Barnitz; Andrew L. Snow; Nicolas Bidère; Lixin Zheng; Vijay Hegde; Lloyd T. Lam; Louis M. Staudt; David Levens; Walter A. Deutsch; Michael J. Lenardo

NF-kappaB is a DNA-binding protein complex that transduces a variety of activating signals from the cytoplasm to specific sets of target genes. To understand the preferential recruitment of NF-kappaB to specific gene regulatory sites, we used NF-kappaB p65 in a tandem affinity purification and mass spectrometry proteomic screen. We identified ribosomal protein S3 (RPS3), a KH domain protein, as a non-Rel subunit of p65 homodimer and p65-p50 heterodimer DNA-binding complexes that synergistically enhances DNA binding. RPS3 knockdown impaired NF-kappaB-mediated transcription of selected p65 target genes but not nuclear shuttling or global protein translation. Rather, lymphocyte-activating stimuli caused nuclear translocation of RPS3, parallel to p65, to form part of NF-kappaB bound to specific regulatory sites in chromatin. Thus, RPS3 is an essential but previously unknown subunit of NF-kappaB involved in the regulation of key genes in rapid cellular activation responses. Our observations provide insight into how NF-kappaB selectively controls gene expression.


Journal of Immunology | 2007

Cutting Edge: Autoantigen Ro52 Is an Interferon Inducible E3 Ligase That Ubiquitinates IRF-8 and Enhances Cytokine Expression in Macrophages

Hee Jeong Kong; D. Eric Anderson; Chang Hoon Lee; Moon Kyoo Jang; Tomohiko Tamura; Prafullakumar Tailor; Hyun Kook Cho; JaeHun Cheong; Huabao Xiong; Herbert C. Morse; Keiko Ozato

IFN regulatory factor (IRF)-8 is a transcription factor important for the development and function of macrophages. It plays a critical role in the induction of cytokine genes, including IL-12p40. Immunopurification and mass spectrometry analysis found that IRF-8 interacted with Ro52 in murine macrophages upon IFN-γ and TLR stimulation. Ro52 is an IFN-inducible protein of the tripartite motif (TRIM) family and is an autoantigen present in patients with Sjögren’s syndrome and systemic lupus erythematosus. Ro52 has a RING motif and is capable of ubiquitinating itself. We show that IRF-8 is ubiquitinated by Ro52 both in vivo and in vitro. Ectopic expression of Ro52 enhanced IL-12p40 expression in IFN-γ/TLR-stimulated macrophages in an IRF-8-dependent manner. Together, Ro52 is an E3 ligase for IRF-8 that acts in a non-degradation pathway of ubiquitination, and contributes to the elicitation of innate immunity in macrophages.


The EMBO Journal | 2007

Cleavage of a bacterial autotransporter by an evolutionarily convergent autocatalytic mechanism

Nathalie Dautin; Travis J. Barnard; D. Eric Anderson; Harris D. Bernstein

Bacterial autotransporters are comprised of an N‐terminal ‘passenger domain’ and a C‐terminal β barrel (‘β domain’) that facilitates transport of the passenger domain across the outer membrane. Following translocation, the passenger domains of some autotransporters are cleaved by an unknown mechanism. Here we show that the passenger domain of the Escherichia coli O157:H7 autotransporter EspP is released in a novel autoproteolytic reaction. After purification, the uncleaved EspP precursor underwent proteolytic processing in vitro. An analysis of protein topology together with mutational studies strongly suggested that the reaction occurs inside the β barrel and revealed that two conserved residues, an aspartate within the β domain (Asp1120) and an asparagine (Asn1023) at the P1 position of the cleavage junction, are essential for passenger domain cleavage. Interestingly, these residues were also essential for the proteolytic processing of two distantly related autotransporters. The data strongly suggest that Asp1120 and Asn1023 form an unusual catalytic dyad that mediates self‐cleavage through the cyclization of the asparagine. Remarkably, a very similar mechanism has been proposed for the maturation of eukaryotic viral capsids.


Nature | 2009

Casein kinase 1α governs antigen-receptor-induced NF-κB activation and human lymphoma cell survival

Nicolas Bidère; Vu N. Ngo; Jeansun Lee; Cailin Collins; Lixin Zheng; Fengyi Wan; R. Eric Davis; Georg Lenz; D. Eric Anderson; Damien Arnoult; Aimé Vazquez; Keiko Sakai; Jun Zhang; Zhaojing Meng; Timothy D. Veenstra; Louis M. Staudt; Michael J. Lenardo

The transcription factor NF-κB is required for lymphocyte activation and proliferation as well as the survival of certain lymphoma types. Antigen receptor stimulation assembles an NF-κB activating platform containing the scaffold protein CARMA1 (also called CARD11), the adaptor BCL10 and the paracaspase MALT1 (the CBM complex), linked to the inhibitor of NF-κB kinase complex, but signal transduction is not fully understood. We conducted parallel screens involving a mass spectrometry analysis of CARMA1 binding partners and an RNA interference screen for growth inhibition of the CBM-dependent ‘activated B-cell-like’ (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). Here we report that both screens identified casein kinase 1α (CK1α) as a bifunctional regulator of NF-κB. CK1α dynamically associates with the CBM complex on T-cell-receptor (TCR) engagement to participate in cytokine production and lymphocyte proliferation. However, CK1α kinase activity has a contrasting role by subsequently promoting the phosphorylation and inactivation of CARMA1. CK1α has thus a dual ‘gating’ function which first promotes and then terminates receptor-induced NF-κB. ABC DLBCL cells required CK1α for constitutive NF-κB activity, indicating that CK1α functions as a conditionally essential malignancy gene—a member of a new class of potential cancer therapeutic targets.


Developmental Cell | 2011

Protein Phosphatase 2A-SUR-6/B55 Regulates Centriole Duplication in C. elegans by Controlling the Levels of Centriole Assembly Factors

Mi Hye Song; Yan Liu; D. Eric Anderson; Wan Jin Jahng; Kevin F. O'Connell

Centrioles play a crucial role in mitotic spindle assembly and duplicate precisely once per cell cycle. In worms, flies, and humans, centriole assembly is dependent upon a key regulatory kinase (ZYG-1/Sak/Plk4) and its downstream effectors SAS-5 and SAS-6. Here we report a role for protein phosphatase 2A (PP2A) in centriole duplication. We find that the PP2A catalytic subunit LET-92, the scaffolding subunit PAA-1, and the B55 regulatory subunit SUR-6 function together to positively regulate centriole assembly. In PP2A-SUR-6-depleted embryos, the levels of ZYG-1 and SAS-5 are reduced and the ZYG-1- and SAS-5-dependent recruitment of SAS-6 to the nascent centriole fails. We show that PP2A physically associates with SAS-5 in vivo and that inhibiting proteolysis can rescue SAS-5 levels and the centriole duplication defect of PP2A-depleted embryos. Together, our findings indicate that PP2A-SUR-6 promotes centriole assembly by protecting ZYG-1 and SAS-5 from degradation.


PLOS Pathogens | 2010

Structural Basis of HIV-1 Neutralization by Affinity Matured Fabs Directed against the Internal Trimeric Coiled-Coil of gp41

Elena Gustchina; Mi Li; John M. Louis; D. Eric Anderson; John R. Lloyd; Christian Frisch; Carole A. Bewley; Alla Gustchina; Alexander Wlodawer; G. Marius Clore

The conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41 is transiently exposed during the fusion process by forming a pre-hairpin intermediate, thus representing an attractive target for the design of fusion inhibitors and neutralizing antibodies. In previous studies we reported a series of broadly neutralizing mini-antibodies derived from a synthetic naïve human combinatorial antibody library by panning against a mimetic of the trimeric N-HR coiled coil, followed by affinity maturation using targeted diversification of the CDR-H2 loop. Here we report crystal structures of the N-HR mimetic 5-Helix with two Fabs that represent the extremes of this series: Fab 8066 is broadly neutralizing across a wide panel of B and C type HIV-1 viruses, whereas Fab 8062 is non-neutralizing. The crystal structures reveal important differences in the conformations of the CDR-H2 loops in the complexes that propagate into other regions of the antigen-antibody interface, and suggest that both neutralization properties and affinity for the target can be attributed, at least in part, to the differences in the interactions of the CDR-H2 loops with the antigen. Furthermore, modeling of the complex of an N-HR trimer with three Fabs suggests that the CDR-H2 loop may be involved in close intermolecular contacts between neighboring antibody molecules, and that such contacts may hinder the formation of complexes between the N-HR trimer and more than one antibody molecule depending on the conformation of the bound CDR-H2 loop which is defined by its interactions with antigen. Comparison with the crystal structure of the complex of 5-Helix with another neutralizing monoclonal antibody known as D5, derived using an entirely different antibody library and panning procedure, reveals remarkable convergence in the optimal sequence and conformation of the CDR-H2 loop.


PLOS ONE | 2015

Analysis of the Outer Membrane Proteome and Secretome of Bacteroides fragilis Reveals a Multiplicity of Secretion Mechanisms

Marlena M. Wilson; D. Eric Anderson; Harris D. Bernstein

Bacteroides fragilis is a widely distributed member of the human gut microbiome and an opportunistic pathogen. Cell surface molecules produced by this organism likely play important roles in colonization, communication with other microbes, and pathogenicity, but the protein composition of the outer membrane (OM) and the mechanisms used to transport polypeptides into the extracellular space are poorly characterized. Here we used LC-MS/MS to analyze the OM proteome and secretome of B. fragilis NCTC 9343 grown under laboratory conditions. Of the 229 OM proteins that we identified, 108 are predicted to be lipoproteins, and 61 are predicted to be TonB-dependent transporters. Based on their proximity to genes encoding TonB-dependent transporters, many of the lipoprotein genes likely encode proteins involved in nutrient or small molecule uptake. Interestingly, protease accessibility and biotinylation experiments indicated that an unusually large fraction of the lipoproteins are cell-surface exposed. We also identified three proteins that are members of a novel family of autotransporters, multiple potential type I protein secretion systems, and proteins that appear to be components of a type VI secretion apparatus. The secretome consisted of lipoproteins and other proteins that might be substrates of the putative type I or type VI secretion systems. Our proteomic studies show that B. fragilis differs considerably from well-studied Gram-negative bacteria such as Escherichia coli in both the spectrum of OM proteins that it produces and the range of secretion strategies that it utilizes.


Trends in Biochemical Sciences | 2002

Structural genomics and signaling domains

James H. Hurley; D. Eric Anderson; Bridgette M. Beach; Bertram Canagarajah; Yew Seng Jonathan Ho; Eudora Jones; Greg Miller; Saurav Misra; Matt Pearson; Layla F. Saidi; Silke Suer; Ray Trievel; Yosuke Tsujishita

Many novel signal transduction domains are being identified in the wake of genome sequencing projects and improved sensitivity in homology-detection techniques. The functions of these domains are being discovered by hypothesis-driven experiments and structural genomics approaches. This article reviews the recent highlights of research on modular signaling domains, and the relative contributions and limitations of the various approaches being used.


Proteomics | 2015

A proteomic approach to discover and compare interacting partners of papillomavirus E2 proteins from diverse phylogenetic groups

Moon Kyoo Jang; D. Eric Anderson; Koenraad Van Doorslaer; Alison A. McBride

Papillomaviruses are a very successful group of viruses that replicate persistently in localized regions of the stratified epithelium of their specific host. Infection results in pathologies ranging from asymptomatic infection, benign warts, to malignant carcinomas. Despite this diversity, papillomavirus genomes are small (7–8 kbp) and contain at most eight genes. To sustain the complex papillomaviral life cycle, each viral protein has multiple functions and interacts with and manipulates a plethora of cellular proteins. In this study, we use tandem affinity purification and MS to identify host factors that interact with 11 different papillomavirus E2 proteins from diverse phylogenetic groups. The E2 proteins function in viral transcription and replication and correspondingly interact with host proteins involved in transcription, chromatin remodeling and modification, replication, and RNA processing.


Journal of Biological Chemistry | 2007

Role of Scarf and its binding target proteins in epidermal calcium homeostasis.

Joonsung Hwang; Alexandr Kalinin; Meeyul Hwang; D. Eric Anderson; Min-Jung Kim; Olivera Stojadinovic; Marjana Tomic-Canic; Seung Hun Lee; Maria I. Morasso

The novel Ca2+-binding protein, Scarf (skin calmodulin-related factor) belongs to the calmodulin-like protein family and is expressed in the differentiated layers of the epidermis. To determine the roles of Scarf during stratification, we set out to identify the binding target proteins by affinity chromatography and subsequent analysis by mass spectrometry. Several binding factors, including 14-3-3s, annexins, calreticulin, ERp72 (endoplasmic reticulum protein 72), and nucleolin, were identified, and their interactions with Scarf were corroborated by co-immunoprecipitation and co-localization analyses. To further understand the functions of Scarf in epidermis in vivo, we altered the epidermal Ca2+ gradient by acute barrier disruption. The change in the expression levels of Scarf and its binding target proteins were determined by immunohistochemistry and Western blot analysis. The expression of Scarf, annexins, calreticulin, and ERp72 were up-regulated by Ca2+ gradient disruption, whereas the expression of 14-3-3s and nucleolin was reduced. Because annexins, calreticulin, and ERp72 have been implicated in Ca2+-induced cellular trafficking, including the secretion of lamellar bodies and Ca2+ homeostasis, we propose that the interaction of Scarf with these proteins might be crucial in the process of barrier restoration. On the other hand, down-regulation of 14-3-3s and nucleolin is potentially involved in the process of keratinocyte differentiation and growth inhibition. The calcium-dependent localization and up-regulation of Scarf and its binding target proteins were studied in mouse keratinocytes treated with ionomycin and during the wound-healing process. We found increased expression and nuclear presence of Scarf in the epidermis of the wound edge 4 and 7 days post-wounding, entailing the role of Scarf in barrier restoration. Our results suggest that Scarf plays a critical role as a Ca2+ sensor, potentially regulating the function of its binding target proteins in a Ca2+-dependent manner in the process of restoration of epidermal Ca2+ gradient as well as during epidermal barrier formation.

Collaboration


Dive into the D. Eric Anderson's collaboration.

Top Co-Authors

Avatar

Fengyi Wan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lixin Zheng

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Louis M. Staudt

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael J. Lenardo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David S. Waugh

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Harris D. Bernstein

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cailin Collins

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

G. Marius Clore

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jeansun Lee

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jun Zhang

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge