Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Farrah is active.

Publication


Featured researches published by D. Farrah.


Monthly Notices of the Royal Astronomical Society | 2003

Starburst and AGN activity in ultraluminous infrared galaxies

D. Farrah; J. Afonso; A. Efstathiou; M. Rowan-Robinson; M. Fox; D. L. Clements

We examine the power source of 41 local Ultraluminous Infrared Galaxies (ULIRGs) using archival infrared (IR) and optical photometry. We fit the observed Spectral Energy Distributions (SEDs) with starburst and AGN components; each component being drawn from a family of templates. We find all of the sample require a starburst, whereas only half require an AGN. In 90% of the sample the starburst provides over half the IR emission, with a mean fractional luminosity of 82%. When combined with other galaxy samples we find that starburst and AGN luminosities correlate over 6 decades in IR luminosity suggesting that a common factor governs both luminosities, plausibly the gas masses in the nuclear regions. We find no trend for increasing fractional AGN luminosity with increasing total luminosity, contrary to previous claims. We find that the mid-IR F7.7/C7.7 line-continuum ratio is no indication of the starburst luminosity, or the fractional AGN luminosity, and therefore that F7.7/C7.7 is not a reliable diagnostic of the power source in ULIRGs. The radio flux correlates with the starburst luminosity, but shows no correlation with the AGN luminosity, in line with previous results. We propose that the scatter in this correlation is due to a skewed starburst IMF and/or relic relativistic electrons from a previous starburst, rather than contamination from an obscured AGN. We show that most ULIRGs undergo multiple starbursts during their lifetime, and by inference that mergers between more than two galaxies may be common amongst ULIRGs. Our results support the evolutionary model for ULIRGs proposed by Farrah et al (2001), where they can follow many different evolutionary paths of starburst and AGN activity in transforming merging spiral galaxies into elliptical galaxies, but that most do not go through an optical QSO phase. The lower level of AGN activity in our local sample than in z � 1 HLIRGs implies that the two samples are distinct populations. We postulate that different galaxy formation processes at high-z are responsible for this difference.


web science | 2010

The Herschel Multi-Tiered Extragalactic Survey: source extraction and cross-identifications in confusion-dominated SPIRE images

Seb Oliver; Martin Kunz; B. Altieri; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; M. Béthermin; A. W. Blain; James J. Bock; A. Boselli; D. Brisbin; V. Buat; D. Burgarella; N. Castro-Rodriguez; A. Cava; P. Chanial; Edward L. Chapin; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; E. Dwek; S. Dye; Stephen Anthony Eales; D. Elbaz; D. Farrah; M. Fox

We present the cross-identification and source photometry techniques used to process Herschel SPIRE imaging taken as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES). Cross-identifications are performed in map-space so as to minimize source-blending effects. We make use of a combination of linear inversion and model selection techniques to produce reliable cross-identification catalogues based on Spitzer MIPS 24-mu m source positions. Testing on simulations and real Herschel observations shows that this approach gives robust results for even the faintest sources (S-250 similar to 10 mJy). We apply our new technique to HerMES SPIRE observations taken as part of the science demonstration phase of Herschel. For our real SPIRE observations, we show that, for bright unconfused sources, our flux density estimates are in good agreement with those produced via more traditional point source detection methods (SUSSEXtractor) by Smith et al. When compared to the measured number density of sources in the SPIRE bands, we show that our method allows the recovery of a larger fraction of faint sources than these traditional methods. However, this completeness is heavily dependent on the relative depth of the existing 24-mu m catalogues and SPIRE imaging. Using our deepest multiwavelength data set in the GOODS-N, we estimate that the use of shallow 24-mu m catalogues in our other fields introduces an incompleteness at faint levels of between 20-40 per cent at 250 mu m.


Astrophysical Journal Supplement Series | 2004

First Insights into the Spitzer Wide-Area Infrared Extragalactic Legacy Survey (SWIRE) Galaxy Populations

Carol J. Lonsdale; Maria del Carmen Polletta; Jason A. Surace; Dave Shupe; F. Fang; C. Kevin Xu; Harding E. Smith; Brian D. Siana; Michael Rowan-Robinson; T. Babbedge; Seb Oliver; F. Pozzi; Payam Davoodi; Frazer N. Owen; Deborah Lynne Padgett; D. T. Frayer; Thomas Harold Jarrett; Frank J. Masci; JoAnne O'Linger; Tim Conrow; D. Farrah; G. Morrison; Nick Gautier; A. Franceschini; S. Berta; I. Perez-Fournon; Evanthia Hatziminaoglou; A. Afonso-Luis; H. Dole; Gordon J. Stacey

We characterize the Spitzer Wide-area Infrared Extragalactic Legacy Survey (SWIRE) galaxy populations in the SWIRE validation field within the Lockman Hole, based on the 3.6-24 μm Spitzer data and deep U, g, r, i optical imaging within an area ~1/3 deg2 for ~16,000 Spitzer SWIRE sources. The entire SWIRE survey will discover over 2.3 million galaxies at 3.6 μm and almost 350,000 at 24 μm; ~70,000 of these will be five-band 3.6-24 μm detections. The colors cover a broad range, generally well represented by redshifted spectral energy distributions of known galaxy populations; however, significant samples of unusually blue objects in the [3.6]-[4.5] color are found, as well as many objects very red in the 3.6-24 μm mid-IR. Nine of these are investigated and are interpreted as star-forming systems, starbursts, and active galactic nuclei (AGNs) from z = 0.37 to 2.8, with luminosities from LIR = 1010.3 to 1013.7 L.We characterize the SWIRE galaxy populations in the SWIRE validation field within the Lockman Hole, based on the 3.6-24μ Spitzer data and deep U,g,r,i optical imaging within an area ∼1/3 sq. deg for ∼16,000 Spitzer-SWIRE sources. The entire SWIRE survey will discover over 2.3 million galaxies at 3.6μm and almost 350,000 at 24μm; ∼ 70,000 of these will be 5-band 3.6-24μ detections. The colors cover a broad range, generally well represented by redshifted spectral


The Astronomical Journal | 2005

Spectral Energy Distributions and Luminosities of Galaxies and Active Galactic Nuclei in the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Legacy Survey

Michael Rowan-Robinson; T. Babbedge; Jason A. Surace; Dave Shupe; F. Fang; Carol J. Lonsdale; Gene Smith; Maria del Carmen Polletta; Brian D. Siana; E. Gonzalez-Solares; Kevin Xu; Frazer N. Owen; Payam Davoodi; Herve Dole; Donovan Louis Domingue; A. Efstathiou; D. Farrah; M. Fox; A. Franceschini; D. T. Frayer; Evanthia Hatziminaoglou; Frank J. Masci; G. Morrison; K. Nandra; Seb Oliver; Natalie Onyett; Deborah Lynne Padgett; I. Perez-Fournon; Steve Serjeant; Gordon J. Stacey

We discuss optical associations, spectral energy distributions and photometric redshifts for SWIRE sources in the ELAIS-N1 area and the Lockman Validation Field. The band-merged IRAC (3.6, 4.5, 5.8 and 8.0 mu) and MIPS (24, 70, 160 mu) data have been associated with optical UgriZ data from the INT Wide Field Survey in ELAIS-N1, and with our own optical Ugri data in Lockman-VF. The spectral energy distributions of selected ELAIS sources in N1 detected by SWIRE, most with spectroscopic redshifts, are modelled in terms of a simple set of galaxy and quasar templates in the optical and near infrared, and with a set of dust emission templates (cirrus, M82 starburst, Arp 220 starburst, and AGN dust torus) in the mid infrared. The optical data, together with the IRAC 3.6 and 4.5 mu data, have been used to determine photometric redshifts. For galaxies with known spectroscopic redshifts there is a notable improvement in the photometric redshift when the IRAC data are used, with a reduction in the rms scatter from 10% in (1+z) to 7%. The photometric redshifts are used to derive the 3.6 and 24 mu redshift distribution and to compare this with the predictions of models. For those sources with a clear mid infrared excess, relative to the galaxy starlight model used for the optical and near infrared, the mid and far infrared data are modelled in terms of the same dust emission templates. The proportions found of each template type are: cirrus 31%, M82 29%, Arp 220 10%, AGN dust tori 29%. The distribution of the different infrared sed types in the L_{ir}/L_{opt} versus L_{ir} plane, where L_{ir} and L_{opt} are the infrared and optical bolometric luminosities, is discussed.We discuss optical associations, spectral energy distributions and photometric redshifts for SWIRE sources in the ELAIS-N1 area and the Lockman Validation Field. The band-merged IRAC (3.6, 4.5, 5.8 and 8.0 mu) and MIPS (24, 70, 160 mu) data have been associated with optical UgriZ data from the INT Wide Field Survey in ELAIS-N1, and with our own optical Ugri data in Lockman-VF. The spectral energy distributions of selected ELAIS sources in N1 detected by SWIRE, most with spectroscopic redshifts, are modelled in terms of a simple set of galaxy and quasar templates in the optical and near infrared, and with a set of dust emission templates (cirrus, M82 starburst, Arp 220 starburst, and AGN dust torus) in the mid infrared. The optical data, together with the IRAC 3.6 and 4.5 mu data, have been used to determine photometric redshifts. For galaxies with known spectroscopic redshifts there is a notable improvement in the photometric redshift when the IRAC data are used, with a reduction in the rms scatter from 10% in (1+z) to 7%. The photometric redshifts are used to derive the 3.6 and 24 mu redshift distribution and to compare this with the predictions of models. For those sources with a clear mid infrared excess, relative to the galaxy starlight model used for the optical and near infrared, the mid and far infrared data are modelled in terms of the same dust emission templates. The proportions found of each template type are: cirrus 31%, M82 29%, Arp 220 10%, AGN dust tori 29%. The distribution of the different infrared sed types in the L_{ir}/L_{opt} versus L_{ir} plane, where L_{ir} and L_{opt} are the infrared and optical bolometric luminosities, is discussed.We discuss optical associations, spectral energy distributions (SEDs), and photometric redshifts for Spitzer Wide-Area Infrared Extragalactic (SWIRE) Survey sources in the European Large-Area ISO Survey (ELAIS) N1 area and the Lockman Validation Field (VF). The band-merged Infrared Array Camera (IRAC) (3.6, 4.5, 5.8, and 8.0 μm) and Multiband Imaging Photometer for Spitzer (24, 70, and 160 μm) data have been associated with optical UgriZ data from the Isaac Newton Telescope Wide Field Survey in ELAIS N1 and with our own optical Ugri data in Lockman-VF. Criteria for eliminating spurious infrared sources and for carrying out star-quasar-galaxy separation are discussed, and statistics of the identification rate are given. Thirty-two percent of sources in the ELAIS N1 field are found to be optically blank (to r = 23.5) and 16% in Lockman-VF (to r = 25). The SEDs of selected ELAIS sources in N1 detected by SWIRE, most with spectroscopic redshifts, are modeled in terms of a simple set of galaxy and quasar templates in the optical and near-infrared (NIR), and with a set of dust emission templates (cirrus, M82 starburst, Arp 220 starburst, and active galactic nucleus [AGN] dust torus) in the mid-infrared. The optical data, together with the IRAC 3.6 and 4.5 μm data, have been used to determine photometric redshifts. For galaxies with known spectroscopic redshifts, there is a notable improvement in the photometric redshift when the IRAC data are used, with a reduction in the rms scatter from 10% in (1 + z) to 7%. Although further spectroscopic data are needed to confirm this result, the prospect of determining good photometric redshifts for much of the SWIRE survey, expected to yield over 2 million extragalactic objects, is excellent. Some modifications to the optical templates were required in the previously uninvestigated wavelength region 2–5 μm. The photometric redshifts are used to derive the 3.6 and 24 μm redshift distribution and to compare this with the predictions of models. For those sources with a clear mid-infrared excess, relative to the galaxy starlight model used for the optical and NIR, the mid- and far-infrared data are modeled in terms of the same dust emission templates (cirrus, M82, Arp 220, and AGN dust torus). The proportions found of each template type are cirrus, 31%; M82, 29%; Arp 220, 10%; and AGN dust tori, 29%. The distribution of the different infrared SED types in the LIR/Lopt versus LIR plane, where LIR and Lopt are the infrared and optical bolometric luminosities, respectively, is discussed. There is an interesting population of luminous cool cirrus galaxies with LIR > Lopt, implying a substantial dust optical depth. Galaxies with Arp 220–like SEDs, of which there are a surprising preponderance compared with preexisting source count models, tend to have high ratios of infrared to optical bolometric luminosity, consistent with having very high extinction. There is also a high proportion of galaxies whose mid-infrared SEDs are fitted by an AGN dust torus template (29%). Of these only 8% of these are type 1 AGNs according to the optical-NIR template fitting, whereas 25% are fitted with galaxy templates in the optical-NIR and have LIR > Lopt and so have to be type 2 AGN. The remainder have LIR < Lopt and so can be Seyfert galaxies, in which the optical AGN fails to be detected against the light of the host galaxy. The implied dust covering factor, ≥75%, is much higher than that inferred for bright optically selected quasars.


Monthly Notices of the Royal Astronomical Society | 2005

The SCUBA half-degree extragalactic survey - I. Survey motivation, design and data processing

A. M. J. Mortier; S. Serjeant; James Dunlop; S. E. Scott; Peter A. R. Ade; D. M. Alexander; Omar Almaini; Itziar Aretxaga; Carlton M. Baugh; Andrew J. Benson; Philip Best; A. W. Blain; J. J. Bock; Colin Borys; A. Bressan; C. L. Carilli; E. L. Chapin; S. C. Chapman; D. L. Clements; K. Coppin; M. Crawford; Mark J. Devlin; Simon R. Dicker; Loretta Dunne; Stephen Anthony Eales; A. C. Edge; D. Farrah; M. Fox; Carlos S. Frenk; E. Gaztanaga

he Submillimetre Common-User Bolometer Array (SCUBA) Half-Degree Extragalactic Survey (SHADES) is a major new blank-field extragalactic submillimetre (submm) survey currently underway at the James Clerk Maxwell Telescope (JCMT). Ultimately, SHADES aims to cover half a square degree at 450 and 850m to a 4 depth of ~= 8mJy at 850m. Two fields are being observed, the Subaru/XMM-Newton Deep Field (SXDF) (02h18m- 05) and the Lockman Hole East (10h52m+ 57). The survey has three main aims: (i) to investigate the population of high-redshift submm galaxies and the cosmic history of massive dust-enshrouded star formation activity; (ii) to investigate the clustering properties of submm-selected galaxies in order to determine whether these objects could be progenitors of present-day massive ellipticals; and (iii) to investigate the fraction of submm-selected sources that harbour active galactic nuclei. To achieve these aims requires that the submm data be combined with co-spatial information spanning the radio-to-X-ray frequency range. Accordingly, SHADES has been designed to benefit from ultra-deep radio imaging obtained with the Very Large Array (VLA), deep mid-infrared observations from the Spitzer Space Telescope, submm mapping by the Balloon-borne Large Aperture Submillimetre Telescope (BLAST), deep near-infrared imaging with the United Kingdom Infrared Telescope, deep optical imaging with the Subaru Telescope and deep X-ray observations with the XMM-Newton observatory. It is expected that the resulting extensive multiwavelength data set will provide complete photometric redshift information accurate to as well as detailed spectral energy distributions for the vast majority of the submm-selected sources. In this paper, the first of a series on SHADES, we present an overview of the motivation for the survey, describe the SHADES survey strategy, provide a detailed description of the primary data-analysis pipeline and demonstrate the superiority of our adopted matched-filter source-extraction technique over, for example, Emerson-II style methods. We also report on the progress of the survey. As of 2004 February, 720arcmin2 had been mapped with SCUBA (about 40 per cent of the anticipated final total area) to a median 1 depth of 2.2mJy per beam at 850m (25mJy per beam at 450m), and the source-extraction routines give a source density of 650 +/- 50 sources deg-2 > 3 at 850m. Although uncorrected for Eddington bias, this source density is more than sufficient for providing enough sources to answer the science goals of SHADES, once half a square degree is observed. A refined reanalysis of the original 8-mJy survey Lockman hole data was carried out in order to evaluate the new data-reduction pipeline. Of the 17 most secure sources in the original sample, 12 have been reconfirmed, including 10 of the 11 for which radio identifications were previously secured.


Monthly Notices of the Royal Astronomical Society | 2001

HST/WFPC2 imaging of the QDOT ultraluminous infrared galaxy sample

D. Farrah; Michael Rowan-Robinson; Seb Oliver; S. Serjeant; Kirk D. Borne; Andrew D. Lawrence; Ray A. Lucas; Howard A. Bushouse; Luis Colina

We present HST WFPC2 V-band imaging for 23 ultraluminous infrared galaxies (ULIRGs) taken from the QDOT redshift survey. The fraction of sources observed to be interacting is 87 per cent. Most of the merging systems show a number of compact ‘knots’, whose colour and brightness differ substantially from their immediate surroundings. Colour maps for nine of the objects show a non-uniform colour structure. Features include blue regions located towards the centres of merging systems which are likely to be areas of enhanced star formation, and compact red regions which are likely to be dust shrouded starbursts or active galactic nuclei. The host galaxies of the quasi-stellar objects (QSOs) in the sample were found to be either interacting systems or ellipticals. Our data show no evidence that ULIRGs are a simple transition stage between galaxy mergers and QSOs. We propose an alternative model for ULIRGs based on the morphologies in our sample and previous N-body simulations. Under this model ULIRGs as a class are much more diverse than a simple transition between galaxy merger and QSO. The evolution of IR power source and merger morphology in ULIRGs is driven solely by the local environment and the morphologies of the merger progenitors.


The Astronomical Journal | 2005

Sloan Digital Sky Survey Quasars in the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE) ELAIS N1 Field: Properties and Spectral Energy Distributions

Evanthia Hatziminaoglou; I. Perez-Fournon; Maria del Carmen Polletta; A. Afonso-Luis; Antonio Hernán-Caballero; F. M. Montenegro-Montes; Carol J. Lonsdale; C. K. Xu; A. Franceschini; M. Rowan-Robinson; T. Babbedge; Harding E. Smith; Jason A. Surace; D. L. Shupe; F. Fang; D. Farrah; Seb Oliver; E. Gonzalez-Solares; S. Serjeant

We present a mid-infrared (MIR) analysis of 35 quasars with spectroscopic redshifts selected from the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE). We discuss their optical and MIR colors and show that these quasars occupy well-defined regions in MIR color-color space. We examine the issue of type 1 active galactic nuclei candidate selection in detail and propose new selection methods based on MIR colors. The available multiband data allow us to construct two new, well-sampled quasar templates, covering wavelengths from the ultraviolet to the MIR.


Monthly Notices of the Royal Astronomical Society | 2002

Submillimetre observations of hyperluminous infrared galaxies

D. Farrah; S. Serjeant; A. Efstathiou; M. Rowan-Robinson; A. Verma

We present submillimetre (sub-mm) photometry for 11 hyperluminous infrared galaxies (HLIRGs, ) and use radiative transfer models for starbursts and active galactic nuclei (AGN) to examine the nature of the IR emission. In all the sources both a starburst and AGN are required to explain the total IR emission. The mean starburst fraction is 35 per cent, with a range spanning 80 per cent starburst-dominated to 80 per cent AGN-dominated. In all cases the starburst dominates at rest-frame wavelengths longwards of 50 mum, with star formation rates >500 Msolar yr-1. The trend of increasing AGN fraction with increasing IR luminosity observed in IRAS galaxies is observed to peak in the HLIRG population, and not increase beyond the fraction seen in the brightest ultraluminous infrared galaxies (ULIRGs). The AGN and starburst luminosities correlate, suggesting that a common physical factor, plausibly the dust masses, govern the luminosities of starbursts and AGN in HLIRGs. Our results suggest that the HLIRG population is composed both of ULIRG-like galaxy mergers and of young galaxies going through their maximal star formation periods whilst harbouring an AGN. The detection of coeval AGN and starburst activity in our sources implies that starburst and AGN activity, and the peak starburst and AGN luminosities, can be coeval in active galaxies generally. When extrapolated to high z our sources have comparable observed frame sub-mm fluxes to sub-mm survey sources. At least some high-z sub-mm survey sources are therefore likely to be composed of similar galaxy populations to those found in the HLIRG population. It is also plausible from these results that high-z sub-mm sources harbour heavily obscured AGN. The differences in X-ray and sub-mm properties between HLIRGs at z~ 1 and sub-mm sources at ~3 implies some level of evolution between the two epochs. Either the mean AGN obscuration level is greater at z~ 3 than at z~ 1, or the fraction of IR-luminous sources at z~ 3 that contain AGN is smaller than that at z~ 1.


The Astronomical Journal | 2005

A Complete Multiwavelength Characterization of Faint Chandra X-Ray Sources Seen in the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Survey

A. Franceschini; J.C. Manners; Maria del Carmen Polletta; Carol J. Lonsdale; E. Gonzalez-Solares; Jason A. Surace; Dave Shupe; F. Fang; C. Kevin Xu; D. Farrah; S. Berta; G. Rodighiero; I. Perez-Fournon; Evanthia Hatziminaoglou; Harding E. Smith; Brian D. Siana; Michael Rowan-Robinson; K. Nandra; T. Babbedge; M. Vaccari; Seb Oliver; Belinda J. Wilkes; Frazer N. Owen; Deborah Lynne Padgett; D. T. Frayer; T. H. Jarrett; Frank J. Masci; Gordon J. Stacey; Omar Almaini; Richard McMahon

We exploit deep combined observations with Spitzer and Chandra of the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE) in the ELAIS N1 region to investigate the nature of the faint X-ray and IR sources in common, to identify active galactic nucleus (AGN)/starburst diagnostics, and to study the sources of the X-ray and IR cosmic backgrounds (XRB and CIRB). In the 17 × 17 area of the Chandra ACIS-I image there are approximately 3400 SWIRE near-IR sources with 4 σ detections in at least two Infrared Array Camera (IRAC) bands and 988 sources detected at 24 μm with the Multiband Imaging Photometer (MIPS) brighter than S24 sime 0.1 mJy. Of these, 102 IRAC and 59 MIPS sources have Chandra counterparts, out of a total of 122 X-ray sources present in the area with S0.5–8 keV > 10-15 ergs cm-2 s-1. We have constructed spectral energy distributions (SEDs) for each source using data from the four IRAC wavebands, Chandra fluxes in the hard (2–8 keV) and soft (0.5–2 keV) X-rays, and optical follow-up data in the wavebands U, g, r, i, Z, and H. We fit a number of spectral templates to the SEDs at optical and IR wavelengths to determine photometric redshifts and spectral categories and also make use of diagnostics based on the X-ray luminosities, hardness ratios, X-ray to IR spectral slopes, and optical morphologies. Although we have spectroscopic redshifts for only a minority of the Chandra sources (10 type 1 QSOs or Seyfert sources and three galaxies), the available SEDs constrain the redshifts for most of the sample sources, which turn out to be typically at 0.5 < z < 2. We find that 39% of the Chandra sources are dominated by type 1 AGN emission (QSOs or Seyfert 1), 23% display optical/IR spectra typical of type 2 AGNs, while the remaining 38% show starburst-like or even normal galaxy spectra (including five passively evolving early-type galaxies). Since we prove that all these galaxies are dominated by AGN emission in X-rays (considering their large 0.5–8 keV rest-frame X-ray luminosities and their high X-ray to IR flux ratios), this brings the fraction of type 1 AGNs to 80% of the type 2 AGNs; even assuming that all the Chandra sources undetected by Spitzer are type 2 AGNs, the type 1 fraction would exceed 1/3 of the total population. Our analysis of the mid-IR MIPS 24 μm–selected sources, making up ~50% of the CIRB, shows that the fraction of those dominated by an AGN (either type 1 or type 2) is relatively constant with the IR flux and around 10%–15%. Our combined IR and hard X-ray observations allow us to verify that the dust covering fraction in type 1 AGNs is widely distributed between ~10% and 100%. A significant fraction, from 15% to 30% or more, of the sources of the XRB are hosted in galaxies whose optical/IR spectra are dominated by starburst (or normal galaxy) emission and for which only the hard X-ray spectra reveal the presence of a moderately luminous hidden AGN.


web science | 2010

Cold dust and young starbursts: spectral energy distributions of Herschel SPIRE sources from the HerMES survey

I. G. Roseboom; M. Vaccari; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; D. Brisbin; V. Buat; D. Burgarella; N. Castro-Rodriguez; A. Cava; P. Chanial; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; E. Dwek; S. Dye; Stephen Anthony Eales; D. Elbaz; D. Farrah; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn

We present spectral energy distributions (SEDs) for 68 Herschel sources detected at 5σ at 250, 350 and 500 μm in the HerMES SWIRE-Lockman field. We explore whether existing models for starbursts, quiescent star-forming galaxies and active galactic nucleus dust tori are able to model the full range of SEDs measured with Herschel. We find that while many galaxies (∼56 per cent) are well fitted with the templates used to fit IRAS, Infrared Space Observatory (ISO) and Spitzer sources, for about half the galaxies two new templates are required: quiescent (‘cirrus’) models with colder (10–20 K) dust and a young starburst model with higher optical depth than Arp 220. Predictions of submillimetre fluxes based on model fits to 4.5–24 μm data agree rather poorly with the observed fluxes, but the agreement is better for fits to 4.5–70 μm data. Herschel galaxies detected at 500 μm tend to be those with the highest dust masses.

Collaboration


Dive into the D. Farrah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol J. Lonsdale

National Radio Astronomy Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason A. Surace

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. L. Shupe

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Cooray

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge