D. Gondar
University of Santiago de Compostela
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Gondar.
Chemosphere | 2008
Andy Baker; Edward Tipping; Sarah Thacker; D. Gondar
The fluorescence excitation-emission matrix properties of 25 dissolved organic matter samples from three rivers and one lake are analysed. All sites are sampled in duplicate, and the 25 samples include ten taken from the lake site, and nine from one of the rivers, to cover variations in dissolved organic matter composition due to season and river flow. Fluorescence properties are compared to the functional properties of the dissolved organic matter; the functional assays provide quantitative information on photochemical fading, buffering capacity, copper binding, benzo[a]pyrene binding, hydrophilicity and adsorption to alumina. Optical (absorbance and fluorescence) characterization of the dissolved organic matter samples demonstrates that (1) peak C (excitation 300-350 nm; emission 400-460 nm) fluorescence emission wavelength; (2) the ratio of peak T (excitation 220-235 nm; emission 330-370 nm) to peak C fluorescence intensity; and (3) the peak C fluorescence intensity: absorbance at 340 nm ratio have strong correlations with many of the functional assays. Strongest correlations are with benzo[a]pyrene binding, alumina adsorption, hydrophilicity and buffering capacity, and in many cases linear regression equations with a correlation coefficient >0.8 are obtained. These optical properties are independent of freshwater dissolved organic carbon concentration (for concentrations <10 mg L(-1)) and therefore hold the potential for laboratory, field and on-line monitoring and prediction of organic matter functional properties.
Journal of Colloid and Interface Science | 2010
Juan M. Antelo; Sarah Fiol; Claudio Pérez; Silvia Mariño; Florencio Arce; D. Gondar; Rocío López
Ferrihydrite nanoparticles may dominate the ion binding properties of the natural oxide fraction present in soil and aquatic systems. A correct description of the adsorption properties of ferrihydrite nanoparticles may be useful for gaining a better insight into the adsorption processes in natural systems and at the same time will be essential for developing surface complexation models able to describe these processes. In the present study, phosphate speciation in ferrihydrite has been analyzed combining the available spectroscopic data and molecular information with modeling calculations. For this purpose, a new data set that analyzes the effect of pH and ionic strength on the phosphate adsorption onto ferrihydrite has been used. Description of the phosphate adsorption process onto ferrihydrite nanoparticles, for the entire pH and ionic strength range, has been made taking into account the presence of protonated and nonprotonated bidentate surface complexes. The presence of monodentate complexes, protonated and nonprotonated, was also analyzed, but no significant improvement in the description of the results was observed. The surface complexation constants obtained with the CD-MUSIC modeling calculations are comparable to the values found in the literature for phosphate surface complexes in goethite particles.
Chemosphere | 2010
A. Iglesias; Rocío López; D. Gondar; Juan M. Antelo; Sarah Fiol; Florencio Arce
Anionic pesticides are adsorbed on the mineral oxide fraction of the soil surface but considerably less on the organic fraction, so that the presence of organic matter causes a decrease in the amount of pesticide adsorbed, and may affect the mechanism of adsorption. In the present study we investigated the adsorption of the weak acid pesticide MCPA on the surface of goethite and of humic acid-coated goethite, selected as models of the mineral oxide fraction and organic components present in soil systems. Adsorption of the anionic form of the pesticide on goethite fitted an S-type isotherm and the amount adsorbed increased as the ionic strength decreased and the pH of the medium decreased. Application of the charge distribution multi site complexation model (CD-MUSIC model) enabled interpretation of the results, which suggested the formation of inner and outer sphere complexes between the pesticide and the singly-coordinated surface sites of goethite. Less pesticide was adsorbed on the humic acid-coated goethite than on the bare goethite and the pattern fitted an L-type isotherm, which indicates a change in the mechanism of adsorption. Simplified calculations with the CD-MUSIC model enabled interpretation of the results, which suggested that the pesticide molecules form the same type of surface complexes as in the previous case.
Journal of Colloid and Interface Science | 2012
Juan M. Antelo; Sarah Fiol; D. Gondar; Rocío López; Florencio Arce
The presence of iron oxides may play an important role in controlling the mobility and availability of contaminants in soils and waters affected by acid mine drainage. The present study describes the uptake of arsenate, chromate and molybdate from solution by synthetic schwertmannite. Batch experiments were performed at different pH values in order to obtain the adsorption isotherms for the three oxyanions. In addition to the formation of surface complexes between the oxyanions and the iron surface reactive groups, it is also expected that anion exchange will occur between sulphate anions from the schwertmannite structure and the oxyanions present in the solid/solution interface. Comparison of the experimental adsorption results for the different oxyanions showed large differences, not only the amount adsorbed, which was much higher for arsenate, but also in the sulphate exchange with the anions in solution. In case of chromate, the main mechanism of adsorption process is the exchange reaction with the sulphate groups present in the schwertmannite. The observed results suggest a different adsorption mechanisms for each of the three oxyanions, with important implications for the mobility of these anions in acid mine drainage systems.
Chemosphere | 2009
A. Iglesias; Rocío López; D. Gondar; Juan M. Antelo; Sarah Fiol; Florencio Arce
The effect of pH and ionic strength on the interaction between pesticides (paraquat and MCPA) and humic substances (soil extracted humic acid and fulvic acid) was interpreted with a simple electrostatic model. Potentiometric titrations were carried out, the charge curves for the humic substances were obtained for three values of ionic strength, and the parameters that define proton binding to humic and fulvic acid were calculated by application of the NICA-Donnan model. The binding isotherms were obtained for paraquat-humic acid and paraquat-fulvic acid at three different pH values and two ionic strengths, and the MCPA-fulvic acid binding isotherms for two pH values and two ionic strengths. Binding experiments were carried out by use of a membrane dialysis technique and the concentrations of pesticide were measured by HPLC. The amount of paraquat bound to the humic substances increased with pH, decreased with increasing ionic strength, decreased in the presence of Ca(2+) and was greater for humic acid than for fulvic acid. Much less binding was observed with MCPA than with paraquat, and therefore the isotherms were not well defined. The application of a simple electrostatic model enabled us to conclude that the effect of pH and ionic strength on binding of paraquat to humic substances is due to the effect that these parameters have on the humic substance charge, and the model provided an excellent reproduction of the experimental binding isotherms.
Journal of Hazardous Materials | 2013
D. Gondar; Rocío López; Juan M. Antelo; Sarah Fiol; Florencio Arce
Soil organic matter (SOM) is considered to be the primary adsorbent of non-ionic pesticides, and it is therefore thought to determine the concentration of such pesticides in the soil solution and how they are transported throughout the medium. It is generally assumed that the sorption capacity of different soils is the same per unit mass of SOM; however, the reactivity also depends on the SOM composition and the pH of the medium. We carried out experiments to study the effects of pH and ionic strength on the adsorption of the non-ionic fungicides metalaxyl and penconazole on four soils containing different amounts of organic carbon. The adsorption isotherms fitted a Freundlich equation. For pH>5, partitioning of the fungicides between the solid phase and the soil solution did not vary with the pH, while at lower pH, the fraction adsorbed on the solid phase increased as the pH decreased. The response was related to the effect of pH on the ionization of the carboxylic groups of the SOM and therefore to the hydrophilic nature of the SOM. Analysis of the charge effect on the partitioning of both fungicides revealed a common response in all four soils. Adsorption appears to be related to the magnitude of the charge developed at the SOM due to ionization of the carboxylic acid groups.
Science of The Total Environment | 2008
Sarah Thacker; Edward Tipping; D. Gondar; Andy Baker
The functional properties of dissolved organic matter (DOM) from Rough Sike, a stream draining blanket peat in the northern Pennines, UK, were investigated using a series of 12 standardised assays. Nine stream samples were collected at different discharges during 2003--2006, and DOM concentrates obtained by low temperature rotary evaporation. Suwannee River Fulvic Acid was used as a quality control standard in the assays. Dissolved organic matter in high-discharge samples was more light-absorbing at 280 and 340 nm and adsorbed more strongly to alumina, than DOM characteristic of low streamflow, but was less fluorescent and hydrophilic, and poorer in proton-dissociating groups. No significant differences were found in light absorption at 254 nm, copper- or benzo(a)pyrene binding, or photochemical fading. Combination of the Rough Sike data with previously-published results for other streams and a lake yields totals of 20-23 values per assay, for a range of DOM types. For the combined data, variability in all the assays is significant (p < 0.001), as judged by comparison with variations in repeat measurements on the quality control standard. Analysis of the combined data shows that DOM hydrophilicity and adsorption are well-predicted by linear relationships with the extinction coefficient at 340 nm (E340), while good quadratic relationships exist between E340 and both buffering capacity and fluorescence.
Journal of Hazardous Materials | 2012
D. Gondar; Rocío López; Juan M. Antelo; Sarah Fiol; Florencio Arce
Herbicides that interact with soil organic matter do so with both the solid and the dissolved fractions, so that the distribution of herbicide between the soil solution and solid phases is determined by competitive effects. In the present study, adsorption experiments were carried out with the cationic herbicide paraquat and untreated and acid-washed samples of a peat soil, at different values of pH and ionic strength. Less herbicide was adsorbed onto the untreated peat than onto the acid-washed peat; the difference was due to the presence of exchangeable cations, as demonstrated in experiments carried out by adding Ca(2+) to suspensions of acid-washed peat. The results were interpreted by an electrostatic model and the fitting parameters indicated that the adsorption constants were the same for both samples of peat, although the number of binding sites available was different. Simultaneous resolution of the adsorption equilibrium of paraquat for the soil organic matter (SOM) and of the binding equilibrium between paraquat and dissolved organic matter (DOM) enabled the distribution of paraquat between the solid and solution phases to be determined. The increased solubility of the SOM with increasing pH led to a decrease in the fraction of paraquat retained on the peat surface above pH 5.5, which favors the mobility of the herbicide in the soil.
Environmental Chemistry | 2009
Juan M. Antelo; Sarah Fiol; Silvia Mariño; Florencio Arce; D. Gondar; Rocío López
Environmental context. Adsorption processes control the mobility and bioavailability of nutrients and contaminants in soils, sediments and aquatic systems. Natural organic matter and aluminium oxides are important reactive materials present in natural systems and their mutual interaction may alter the surface properties of both materials, playing an important role on the fate of different contaminants, such as copper, in the environment. The present study illustrates the importance of these interactions, showing that the presence of natural organic matter has a synergic effect on the copper adsorption on the aluminium oxide surface. Abstract. Copper adsorption processes on aluminium oxides may significantly control the mobility and transport of copper ions in soils and surface waters. The binding of protons and copper to humic acid (HA) and to gibbsite as single sorbent systems was investigated and the results then used to test the validity of the Linear Additivity Model (LAM) for describing copper binding to gibbsite/HA systems. More copper was adsorbed in the gibbsite/HA/Cu2+ ternary system, at pH 4 and 6 and ionic strength 0.1 M, than in the corresponding binary systems. Although copper adsorption on gibbsite at pH 4 is rather small, the enhancement in sorption was noteworthy, and can be attributed to the formation of ternary complexes and changes in the electrostatic potentials at the mineral surface or at the HA as a result of their mutual interaction. The LAM predicted satisfactorily the experimental results at pH 6, whereas it underestimated the copper binding at pH 4.
Chemical Speciation and Bioavailability | 2000
D. Gondar; Sarah Fiol; Rocío López; María Ramos; Juan M. Antelo; Florencio Arce
Abstract In the present work, the Cu2+-soil fulvic acid intrinsic complexation parameters (stability constants and complexation capacities) have been derived, using the master curve approach. The experimental technique was the potentiometry with an ISE for Cu2+ ions. The charge–pCu data derived from the experimental titration curves were transformed into charge–surface pCu (pCu=–log[Cu2+]) using a spherical double layer model, in order to obtain the intrinsic complexation constants. For this transformation, geometric parameters of the fulvic acid are needed. Several models have been applied that try to differenciate between heterogeneity and electrostatic effect, two main features of humic substances.