Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. H. Kalantar is active.

Publication


Featured researches published by D. H. Kalantar.


Science | 2010

Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies

S. H. Glenzer; B. J. MacGowan; P. Michel; N. B. Meezan; L. J. Suter; S. Dixit; J. L. Kline; G. A. Kyrala; D. K. Bradley; D. A. Callahan; E. L. Dewald; L. Divol; E. G. Dzenitis; M. J. Edwards; Alex V. Hamza; C. A. Haynam; D. E. Hinkel; D. H. Kalantar; J. D. Kilkenny; O. L. Landen; J. D. Lindl; S. LePape; J. D. Moody; A. Nikroo; T. Parham; M. B. Schneider; R. P. J. Town; Paul J. Wegner; K. Widmann; Pamela K. Whitman

Ignition Set to Go One aim of the National Ignition Facility is to implode a capsule containing a deuterium-tritium fuel mix and initiate a fusion reaction. With 192 intense laser beams focused into a centimeter-scale cavity, a major challenge has been to create a symmetric implosion and the necessary temperatures within the cavity for ignition to be realized (see the Perspective by Norreys). Glenzer et al. (p. 1228, published online 28 January) now show that these conditions can be met, paving the way for the next step of igniting a fuel-filled capsule. Furthermore, Li et al. (p. 1231, published online 28 January) show how charged particles can be used to characterize and measure the conditions within the imploding capsule. The high energies and temperature realized can also be used to model astrophysical and other extreme energy processes in a laboratory settings. Laser-driven temperatures and implosion symmetry are close to the requirements for inertial-fusion ignition. Indirect-drive hohlraum experiments at the National Ignition Facility have demonstrated symmetric capsule implosions at unprecedented laser drive energies of 0.7 megajoule. One hundred and ninety-two simultaneously fired laser beams heat ignition-emulate hohlraums to radiation temperatures of 3.3 million kelvin, compressing 1.8-millimeter-diameter capsules by the soft x-rays produced by the hohlraum. Self-generated plasma optics gratings on either end of the hohlraum tune the laser power distribution in the hohlraum, which produces a symmetric x-ray drive as inferred from the shape of the capsule self-emission. These experiments indicate that the conditions are suitable for compressing deuterium-tritium–filled capsules, with the goal of achieving burning fusion plasmas and energy gain in the laboratory.


Acta Materialia | 2003

Laser-induced shock compression of monocrystalline copper: characterization and analysis

Marc A. Meyers; F. Gregori; Bimal K. Kad; M. S. Schneider; D. H. Kalantar; B. A. Remington; Guruswami Ravichandran; T. Boehly; J. S. Wark

Controlled laser experiments were used to generate ultra-short shock pulses of approximately 5 ns duration in monocrystalline copper specimens with [001] orientation. Transmission electron microscopy revealed features consistent with previous observations of shock-compressed copper, albeit at pulse durations in the µs regime. At pressures of 12 and 20 GPa, the structure consists primarily of dislocation cells; at 40 GPa, twinning and stacking-fault bundles are the principal defect structures; and at a pressure of 55–60 GPa, the structure shows micro-twinning and the effects of thermal recovery (elongated sub-grains). The results suggest that the defect structure is generated at the shock front; the substructures observed are similar to the ones at much larger durations. The dislocation generation is discussed, providing a constitutive description of plastic deformation. It is proposed that thermally activated loop nucleation at the front is the mechanism for dislocation generation. A calculational method for dislocation densities is proposed, based on nucleation of loops at the shock front and their extension due to the residual shear stresses behind the front. Calculated dislocation densities compare favorably with experimentally observed results. It is proposed that simultaneous diffraction by Laue and Bragg of different lattice planes at the shock front can give the strain state and the associated stress level at the front. This enables the calculation of the plastic flow resistance at the imposed strain rate. An estimated strength of 435 MPa is obtained, for a strain rate of 1.3 × 10 7 s 1 . The threshold stress for deformation twinning in shock compression is calculated from the constitutive equations for slip, twinning, and the Swegle–Grady relationship. The calculated threshold pressure for the [001] orientation is 16.3 GPa.  2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.


Review of Scientific Instruments | 2001

X-ray backlighting for the National Ignition Facility (invited)

O. L. Landen; D. R. Farley; S. G. Glendinning; L. M. Logory; P. M. Bell; J. A. Koch; F. D. Lee; David K. Bradley; D. H. Kalantar; C. A. Back; R. E. Turner

X-ray backlighting is a powerful tool for diagnosing a large variety of high-energy-density phenomena. Traditional area backlighting techniques used at Nova and Omega cannot be extended efficiently to NIF-scale. New, more efficient backlighting sources and techniques are required and have begun to show promising results. These include a backlit-pinhole point projection technique, pinhole and slit arrays, distributed polychromatic sources, and picket fence backlighters. In parallel, there have been developments in improving the data SNR and hence quality by switching from film to CCD-based recording media and by removing the fixed-pattern noise of MCP-based cameras.


Physics of Plasmas | 1996

Laser–plasma interactions in ignition‐scale hohlraum plasmas

B. J. MacGowan; Bedros Afeyan; C. A. Back; R. L. Berger; G. Bonnaud; M. Casanova; Bruce I. Cohen; D. E. Desenne; D. F. DuBois; A. G. Dulieu; K. G. Estabrook; J. C. Fernandez; S. H. Glenzer; D. E. Hinkel; T. B. Kaiser; D. H. Kalantar; R. L. Kauffman; R. K. Kirkwood; W. L. Kruer; A. B. Langdon; Barbara F. Lasinski; D. S. Montgomery; John Moody; David H. Munro; L. V. Powers; H. A. Rose; C. Rousseaux; R. E. Turner; B. H. Wilde; S. C. Wilks

Scattering of laser light by stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) is a concern for indirect drive inertial confinement fusion (ICF). The hohlraum designs for the National Ignition Facility (NIF) raise particular concerns due to the large scale and homogeneity of the plasmas within them. Experiments at Nova have studied laser–plasma interactions within large scale length plasmas that mimic many of the characteristics of the NIF hohlraum plasmas. Filamentation and scattering of laser light by SBS and SRS have been investigated as a function of beam smoothing and plasma conditions. Narrowly collimated SRS backscatter has been observed from low density, low‐Z, plasmas, which are representative of the plasma filling most of the NIF hohlraum. SBS backscatter is found to occur in the high‐Z plasma of gold ablated from the wall. Both SBS and SRS are observed to be at acceptable levels in experiments using smoothing by spectral dispersion (SSD).


Physics of Plasmas | 2011

Symmetry tuning for ignition capsules via the symcap techniquea)

G. A. Kyrala; J. L. Kline; S. Dixit; S. H. Glenzer; D. H. Kalantar; D. K. Bradley; N. Izumi; N. B. Meezan; O. L. Landen; D. A. Callahan; S. V. Weber; J. P. Holder; S. Glenn; M. J. Edwards; J. A. Koch; L. J. Suter; S. W. Haan; R. P. J. Town; P. Michel; O. S. Jones; S. H. Langer; J. D. Moody; E. L. Dewald; T. Ma; J. E. Ralph; Alex V. Hamza; E. G. Dzenitis; J. D. Kilkenny

Symmetry of an implosion is crucial to get ignition successfully. Several methods of control and measurement of symmetry have been applied on many laser systems with mm size hohlraums and ns pulses. On the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] we have large hohlraums of cm scale, long drive pulses of 10 s of ns, and a large number of beams with the option to tune their wavelengths. Here we discuss how we used the x-ray self-emission from imploding surrogates to ignition capsules (symcaps) to measure the symmetry of the implosion. We show that symcaps are good surrogates for low order symmetry, though having lower sensitivity to distortions than ignition capsules. We demonstrate the ability to transfer energy between laser beams in a gas-filled hohlraum using wavelength tuning, successfully tuning the lowest order symmetry of the symcaps in different size hohlraums at different laser energies within the specification established by calculations for successful ignition.


Applied Optics | 1998

High-Energy X-ray Microscopy Techniques for Laser-Fusion Plasma Research at the National Ignition Facility.

J. A. Koch; O. L. Landen; Troy W. Barbee; Peter M. Celliers; L. B. Da Silva; S. G. Glendinning; B. A. Hammel; D. H. Kalantar; C. Brown; John F. Seely; G. R. Bennett; W. W. Hsing

Multi-kilo-electron-volt x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF). However, laser energies and plasma characteristics imply that x-ray microscopy will be more challenging at NIF than at existing facilities. We use analytical estimates and numerical ray tracing to investigate several instrumentation options in detail, and we conclude that near-normal-incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-ray microscopy at NIF and similar large facilities. Apertured Kirkpatrick-Baez microscopes using multilayer mirrors may also be good options, particularly for applications requiring one-dimensional imaging over narrow fields of view.


Physics of Plasmas | 2012

Implosion dynamics measurements at the National Ignition Facility

Damien G. Hicks; N. B. Meezan; E. L. Dewald; A. J. Mackinnon; R.E. Olson; D. A. Callahan; T. Döppner; L. R. Benedetti; D. K. Bradley; Peter M. Celliers; D. S. Clark; P. Di Nicola; S. N. Dixit; E. G. Dzenitis; J. E. Eggert; D. R. Farley; J. A. Frenje; S. Glenn; S. H. Glenzer; Alex V. Hamza; R. F. Heeter; J. P. Holder; N. Izumi; D. H. Kalantar; S. F. Khan; J. L. Kline; J. J. Kroll; G. A. Kyrala; T. Ma; A. G. MacPhee

Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1–1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsu...


Physics of Plasmas | 2012

Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation

H. F. Robey; T. R. Boehly; Peter M. Celliers; Jon H. Eggert; Damien G. Hicks; R.F. Smith; R. Collins; M. W. Bowers; K. Krauter; P. S. Datte; D. H. Munro; J. L. Milovich; O. S. Jones; P. Michel; C. A. Thomas; R.E. Olson; Stephen M. Pollaine; R. P. J. Town; S. W. Haan; D. A. Callahan; D. S. Clark; J. Edwards; J. L. Kline; S. N. Dixit; M. B. Schneider; E. L. Dewald; K. Widmann; J. D. Moody; T. Döppner; H.B. Radousky

Capsule implosions on the National Ignition Facility (NIF) [Lindl et al., Phys. Plasmas 11, 339 (2004)] are underway with the goal of compressing deuterium-tritium (DT) fuel to a sufficiently high areal density (ρR) to sustain a self-propagating burn wave required for fusion power gain greater than unity. These implosions are driven with a carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the DT fuel on a low adiabat. Initial experiments to measure the strength and relative timing of these shocks have been conducted on NIF in a specially designed surrogate target platform known as the keyhole target. This target geometry and the associated diagnostics are described in detail. The initial data are presented and compared with numerical simulations. As the primary goal of these experiments is to assess and minimize the adiabat in related DT implosions, a methodology is described for quantifying the adiabat from the shock velocity measurements. Results ...


Review of Scientific Instruments | 2010

Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited)

George A. Kyrala; S. Dixit; S. H. Glenzer; D. H. Kalantar; David K. Bradley; N. Izumi; N. B. Meezan; O. L. Landen; D. A. Callahan; S. V. Weber; J. P. Holder; S. Glenn; M. J. Edwards; P. M. Bell; J. R. Kimbrough; J. A. Koch; R. Prasad; L. J. Suter; J. L. Kline; J. D. Kilkenny

Ignition of imploding inertial confinement capsules requires, among other things, controlling the symmetry with high accuracy and fidelity. We have used gated x-ray imaging, with 10 μm and 70 ps resolution, to detect the x-ray emission from the imploded core of symmetry capsules at the National Ignition Facility. The measurements are used to characterize the time dependent symmetry and the x-ray bang time of the implosion from two orthogonal directions. These measurements were one of the primary diagnostics used to tune the parameters of the laser and Hohlraum to vary the symmetry and x-ray bang time of the implosion of cryogenically cooled ignition scale deuterium/helium filled plastic capsules. Here, we will report on the successful measurements performed with up to 1.2 MJ of laser energy in a fully integrated cryogenics gas-filled ignition-scale Hohlraum and capsule illuminated with 192 smoothed laser beams. We will describe the technique, the accuracy of the technique, and the results of the variation in symmetry with tuning parameters, and explain how that set was used to predictably tune the implosion symmetry as the laser energy, the laser cone wavelength separation, and the Hohlraum size were increased to ignition scales. We will also describe how to apply that technique to cryogenically layered tritium-hydrogen-deuterium capsules.


Physics of Plasmas | 2000

Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system

J. P. Knauer; R. Betti; D. K. Bradley; T. R. Boehly; T.J.B. Collins; V.N. Goncharov; P.W. McKenty; D. D. Meyerhofer; V. A. Smalyuk; C. P. Verdon; S. G. Glendinning; D. H. Kalantar; Robert G. Watt

The results from a series of single-mode, Rayleigh–Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5×1014 W/cm2. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%–7% over a 600 μm diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83–124] of the growth of 20, 31, and 60 ...

Collaboration


Dive into the D. H. Kalantar's collaboration.

Top Co-Authors

Avatar

B. A. Remington

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

O. L. Landen

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. V. Weber

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. J. MacGowan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jeffrey D. Colvin

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Marc A. Meyers

University of California

View shared research outputs
Top Co-Authors

Avatar

E. L. Dewald

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. P. Holder

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Dixit

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge