Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. J. Walton is active.

Publication


Featured researches published by D. J. Walton.


The Astrophysical Journal | 2013

The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-Ray Mission

Fiona A. Harrison; William W. Craig; Finn Erland Christensen; Charles J. Hailey; William W. Zhang; Steven E. Boggs; Daniel Stern; W. Rick Cook; Karl Forster; Paolo Giommi; Brian W. Grefenstette; Yunjin Kim; Takao Kitaguchi; Jason E. Koglin; Kristin K. Madsen; Peter H. Mao; Hiromasa Miyasaka; Kaya Mori; Matteo Perri; Michael J. Pivovaroff; S. Puccetti; V. Rana; Niels Jørgen Stenfeldt Westergaard; Jason Willis; Andreas Zoglauer; Hongjun An; Matteo Bachetti; Eric C. Bellm; Varun Bhalerao; Nicolai F. Brejnholt

The Nuclear Spectroscopic Telescope Array (NuSTAR) is a National Aeronautics and Space Administration (NASA) Small Explorer mission that carried the first focusing hard X-ray (6-79 keV) telescope into orbit. It was launched on a Pegasus rocket into a low-inclination Earth orbit on June 13, 2012, from Reagan Test Site, Kwajalein Atoll. NuSTAR will carry out a two-year primary science mission. The NuSTAR observatory is composed of the X-ray instrument and the spacecraft. The NuSTAR spacecraft is three-axis stabilized with a single articulating solar array based on Orbital Sciences Corporations LEOStar-2 design. The NuSTAR science instrument consists of two co-aligned grazing incidence optics focusing on to two shielded solid state CdZnTe pixel detectors. The instrument was launched in a compact, stowed configuration, and after launch, a 10-meter mast was deployed to achieve a focal length of 10.15 m. The NuSTAR instrument provides sub-arcminute imaging with excellent spectral resolution over a 12-arcminute field of view. The NuSTAR observatory will be operated out of the Mission Operations Center (MOC) at UC Berkeley. Most science targets will be viewed for a week or more. The science data will be transferred from the UC Berkeley MOC to a Science Operations Center (SOC) located at the California Institute of Technology (Caltech). In this paper, we will describe the mission architecture, the technical challenges during the development phase, and the post-launch activities.


Nature | 2013

A rapidly spinning supermassive black hole at the centre of NGC 1365

G. Risaliti; Fiona A. Harrison; K. K. Madsen; D. J. Walton; S. E. Boggs; Finn Erland Christensen; William W. Craig; Brian W. Grefenstette; C. J. Hailey; E. Nardini; Daniel Stern; William W. Zhang

Broad X-ray emission lines from neutral and partially ionized iron observed in active galaxies have been interpreted as fluorescence produced by the reflection of hard X-rays off the inner edge of an accretion disk. In this model, line broadening and distortion result from rapid rotation and relativistic effects near the black hole, the line shape being sensitive to its spin. Alternative models in which the distortions result from absorption by intervening structures provide an equally good description of the data, and there has been no general agreement on which is correct. Recent claims that the black hole (2 × 106 solar masses) at the centre of the galaxy NGC 1365 is rotating at close to its maximum possible speed rest on the assumption of relativistic reflection. Here we report X-ray observations of NGC 1365 that reveal the relativistic disk features through broadened Fe-line emission and an associated Compton scattering excess of 10–30 kiloelectronvolts. Using temporal and spectral analyses, we disentangle continuum changes due to time-variable absorption from reflection, which we find arises from a region within 2.5 gravitational radii of the rapidly spinning black hole. Absorption-dominated models that do not include relativistic disk reflection can be ruled out both statistically and on physical grounds.


Monthly Notices of the Royal Astronomical Society | 2013

Suzaku Observations of 'Bare' Active Galactic Nuclei

D. J. Walton; E. Nardini; A. C. Fabian; Luigi C. Gallo; R. C. Reis

We present an X-ray spectral analysis of a large sample of 25 ‘bare’ active galactic nuclei (AGN), sources with little or no complicating intrinsic absorption, observed with Suzaku. Our work focuses on studying the potential contribution from relativistic disc reflection and examining the implications of this interpretation for the intrinsic spectral complexities frequently displayed by AGN in the X-ray bandpass. During the analysis, we take the unique approach of attempting to simultaneously undertake a systematic analysis of the whole sample, as well as a detailed treatment of each individual source, and find that disc reflection has the required flexibility to successfully reproduce the broad-band spectrum observed for all of the sources considered. Where possible, we use the reflected emission to place constraints on the black hole spin for this sample of sources. Our analysis suggests a general preference for rapidly rotating black holes, which if taken at face value is most consistent with the scenario in which supermassive black hole growth is dominated by prolonged, ordered accretion. However, there may be observational biases towards AGN with high spin in the compiled sample, limiting our ability to draw strong conclusions for the general population at this stage. Finally, contrary to popular belief, our analysis also implies that the dichotomy between radio-loud/radio-quiet AGN is not solely related to black hole spin.


Astrophysical Journal Supplement Series | 2015

CALIBRATION OF THE NuSTAR HIGH-ENERGY FOCUSING X-RAY TELESCOPE

Kristin K. Madsen; Fiona A. Harrison; Craig B. Markwardt; Hongjun An; Brian W. Grefenstette; Matteo Bachetti; Hiromasa Miyasaka; Takao Kitaguchi; Varun Bhalerao; S. E. Boggs; Finn Erland Christensen; William W. Craig; Karl Forster; F. Fuerst; Charles J. Hailey; Matteo Perri; S. Puccetti; V. Rana; Daniel Stern; D. J. Walton; Niels Jørgen Stenfeldt Westergaard; William W. Zhang

We present the calibration of the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray satellite. We used the Crab as the primary effective area calibrator and constructed a piece-wise linear spline function to modify the vignetting response. The achieved residuals for all off-axis angles and energies, compared to the assumed spectrum, are typically better than ±2% up to 40 keV and 5%–10% above due to limited counting statistics. An empirical adjustment to the theoretical two-dimensional point-spread function (PSF) was found using several strong point sources, and no increase of the PSF half-power diameter has been observed since the beginning of the mission. We report on the detector gain calibration, good to 60 eV for all grades, and discuss the timing capabilities of the observatory, which has an absolute timing of ±3 ms. Finally, we present cross-calibration results from two campaigns between all the major concurrent X-ray observatories (Chandra, Swift, Suzaku, and XMM-Newton), conducted in 2012 and 2013 on the sources 3C 273 and PKS 2155-304, and show that the differences in measured flux is within ~10% for all instruments with respect to NuSTAR.


The Astrophysical Journal | 2013

The Ultraluminous X-Ray Sources NGC 1313 X-1 and X-2: A Broadband Study with NuSTAR and XMM-Newton

Matteo Bachetti; V. Rana; D. J. Walton; Didier Barret; Fiona A. Harrison; Steven E. Boggs; Finn Erland Christensen; William W. Craig; Andrew C. Fabian; Felix Fürst; Brian W. Grefenstette; Charles J. Hailey; Ann Hornschemeier; Kristin K. Madsen; Jon M. Miller; Andrew F. Ptak; Daniel Stern; Natalie A. Webb; William W. Zhang

We present the results of NuSTAR and XMM-Newton observations of the two ultraluminous X-ray sources: NGC 1313 X-1 and X-2. The combined spectral bandpass of the two satellites enables us to produce the first spectrum of X-1 between 0.3 and 30 keV, while X-2 is not significantly detected by NuSTAR above 10 keV. The NuSTAR data demonstrate that X-1 has a clear cutoff above 10 keV, whose presence was only marginally detectable with previous X-ray observations. This cutoff rules out the interpretation of X-1 as a black hole in a standard low/hard state, and it is deeper than predicted for the downturn of a broadened iron line in a reflection-dominated regime. The cutoff differs from the prediction of a single-temperature Comptonization model. Further, a cold disk-like blackbody component at ~0.3 keV is required by the data, confirming previous measurements by XMM-Newton only. We observe a spectral transition in X-2, from a state with high luminosity and strong variability to a lower-luminosity state with no detectable variability, and we link this behavior to a transition from a super-Eddington to a sub-Eddington regime.


Monthly Notices of the Royal Astronomical Society | 2011

2XMM ultraluminous X-ray source candidates in nearby galaxies

D. J. Walton; T. P. Roberts; S. Mateos; V. Heard

Ultraluminous X-ray sources (ULXs) are some of the most enigmatic X-ray bright sources known to date. It is generally accepted that they cannot host black holes as large as those associated with active galaxies, but they appear to be significantly more luminous than their better understood Galactic X-ray binary (XRB) cousins, while displaying an intriguing combination of differences and similarities with them. Through studying large, representative samples of these sources we may hope to enhance our understanding of them. To this end, we derive a large catalogue of 650 X-ray detections of 470 ULX candidates, located in 238 nearby galaxies, by cross-correlating the 2XMM Serendipitous Survey with the Third Reference Catalogue of Bright Galaxies. The presented dedicated catalogue offers a significant improvement over those previously published in terms of both the number and the contribution of background contaminants, e.g. distant quasars, which we estimate to be at most 24 per cent, but more likely ∼17 per cent. To undertake population studies, we define a ‘complete’ sub-sample of sources compiled from observations of galaxies with sensitivity limits below 10 39 erg s −1 .T he luminosity function of this sample is consistent with a simple power law of form N(>LX) ∝ L −0.96 ±0.11 X . Although we do not find any statistical requirement for a cut-off luminosity of Lc ∼ 10 40 erg s −1 , as has been reported previously, we are not able to rule out its presence. Also, we find that the number of ULXs per unit galaxy mass, S u , decreases with increasing galaxy mass for ULXs associated with spiral galaxies, and is well modelled with a power law of form S u ∝ M −0.64 ±0.07 . This is in broad agreement with previous results, and is likely to be a consequence of the decrease in specific star formation and increase in metallicity with increasing spiral galaxy mass. S u is consistent with being constant with galaxy mass for sources associated with elliptical galaxies, implying this older ULX population traces stellar mass rather than star formation.


Science | 2014

A fast and long-lived outflow from the supermassive black hole in NGC 5548

Jelle S. Kaastra; Gerard A. Kriss; M. Cappi; M. Mehdipour; P. O. Petrucci; K. C. Steenbrugge; Nahum Arav; Ehud Behar; Stefano Bianchi; R. Boissay; Graziella Branduardi-Raymont; C. Chamberlain; E. Costantini; J. C. Ely; J. Ebrero; L. Di Gesu; Fiona A. Harrison; Shai Kaspi; J. Malzac; B. De Marco; Giorgio Matt; K. Nandra; S. Paltani; R. Person; B. M. Peterson; Ciro Pinto; G. Ponti; F. Pozo Nuñez; A. De Rosa; H. Seta

Gas jets block extragalactic x-rays Supermassive black holes at the heart of active galaxies produce powerful gas outflows. NGC 5548 is one such source known to sustain a persistent outflow of ionized gas. However, its associated x-ray and ultraviolet (UV) emission seem to have been suppressed in recent years. Kaastra et al. conducted a multiwavelength monitoring campaign throughout 2013 to characterize the systems behavior. They suggest that an additional faster jet component has been launching clumps of gas that obscure both the x-ray and UV radiation. The timing of this phenomenon indicates a source only a few light-days away from the nucleus. This proximity suggests that the outflow could be associated with a wind from the supermassive black holes accretion disk. Even more powerful outflows could also influence their host galaxies, and this finding demonstrates how that feedback might work. Science, this issue p. 64 Prolonged suppression of high-energy emission from an active galactic nucleus is attributed to fast expulsion of ionized gas. Supermassive black holes in the nuclei of active galaxies expel large amounts of matter through powerful winds of ionized gas. The archetypal active galaxy NGC 5548 has been studied for decades, and high-resolution x-ray and ultraviolet (UV) observations have previously shown a persistent ionized outflow. An observing campaign in 2013 with six space observatories shows the nucleus to be obscured by a long-lasting, clumpy stream of ionized gas not seen before. It blocks 90% of the soft x-ray emission and causes simultaneous deep, broad UV absorption troughs. The outflow velocities of this gas are up to five times faster than those in the persistent outflow, and, at a distance of only a few light days from the nucleus, it may likely originate from the accretion disk.


Monthly Notices of the Royal Astronomical Society | 2012

The most extreme ultraluminous X-ray sources: evidence for intermediate-mass black holes?

Andrew D. Sutton; T. P. Roberts; D. J. Walton; Jeanette C. Gladstone; Amy E. Scott

We present the results from an X-ray and optical study of a new sample of eight extreme luminosity ultraluminous X-ray source (ULX) candidates, which were selected as the brightest ULXs (with LX > 5 × 10 40 erg s −1 ) located within 100 Mpc identified in a cross-correlation of the 2XMM-DR1 and RC3 catalogues. These objects are so luminous that they are difficult to describe with current models of super-Eddington accretion on to all but the most massive stellar remnants; hence they are amongst the most plausible candidates to host larger, intermediate-mass black holes (IMBHs). Two objects are luminous enough in at least one observation to be classed as hyperluminous X-ray source (HLX) candidates, including one persistent HLX in an S0 galaxy that (at 3 × 10 41 erg s −1 ) is the second most luminous HLX yet detected. The remaining seven sources are located in spiral galaxies, and several appear to be closely associated with regions of star formation as is common for many less luminous ULXs. However, the X-ray characteristics of these extreme ULXs appear to diverge from the less luminous objects. They are typically harder, possessing absorbed power-law continuum spectra with � ∼ 1.7, and are potentially more variable on short time-scales, with data consistent with ∼10–20 per cent rms variability on time-scales of 0.2–2 ks (albeit at low to moderate significance in many data sets). These properties appear consistent with the sub-Eddington hard state, which given the observed luminosities of these objects suggests the presence of IMBHs with masses in the range of u 3 –10 4 M� . As such, this strengthens the case for these brightest ULXs as good candidates for the eventual conclusive detection of the highly elusive IMBHs in the present-day Universe. However, we caution that a combination of the highest plausible super-Eddington accretion rates and the largest permitted stellar black hole remnants cannot be ruled out without future, improved observations.


Nature | 2012

Bright radio emission from an ultraluminous stellar-mass microquasar in M 31

Matthew Middleton; J. C. A. Miller-Jones; Sera Markoff; R. P. Fender; Martin Henze; Natasha Hurley-Walker; Anna M. M. Scaife; T. P. Roberts; D. J. Walton; John M. Carpenter; J.-P. Macquart; Geoffrey C. Bower; M. A. Gurwell; W. Pietsch; F. Haberl; J. Harris; M. K. Daniel; Junayd Miah; Chris Done; J. Morgan; H. J. Dickinson; P. A. Charles; Vadim Burwitz; Massimo Della Valle; Michael J. Freyberg; J. Greiner; Margarita Hernanz; Dieter H. Hartmann; D. Hatzidimitriou; Arno Riffeser

A subset of ultraluminous X-ray sources (those with luminosities of less than 1040 erg s−1; ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ∼5–20, probably by means of an accretion disk. The X-ray and radio emission are coupled in such Galactic sources; the radio emission originates in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium hinders the determination of the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source in the nearby galaxy M 31, whose peak luminosity exceeded 1039 erg s−1. The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highly compact and powered by accretion close to the Eddington limit onto a black hole of stellar mass. Continued radio and X-ray monitoring of such sources should reveal the causal relationship between the accretion flow and the powerful jet emission.


Science | 2015

Black hole feedback in the luminous quasar PDS 456

E. Nardini; J. N. Reeves; J. Gofford; Fiona A. Harrison; G. Risaliti; V. Braito; M. T. Costa; G. A. Matzeu; D. J. Walton; E. Behar; S. E. Boggs; Finn Erland Christensen; William W. Craig; Charles J. Hailey; G. Matt; Josef M. Miller; Paul T. O'Brien; D. Stern; T. J. Turner; M. Ward

Finding the necessary negative feedback The evolution of galaxies seems to be tied to the growth of the supermassive black holes at their centers, but its not entirely clear why. Models have suggested a mechanism in which the growth of the black hole results in an outflow of gas that interrupts star formation. However, evidence for enough of this negative feedback has been lacking. Nardini et al. now see a signature in x-ray spectra of a strong persistent outflow in the quasar PDS 456. They estimate a broad solid angle spanned by the wind that enables a far greater impact on the host galaxy than narrower jet outflows. Science, this issue p. 860 A broad wind outflow from an accreting supermassive black hole could stunt star formation in its host galaxy. The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband x-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflow’s kinetic power larger than 1046 ergs per second is enough to provide the feedback required by models of black hole and host galaxy coevolution.

Collaboration


Dive into the D. J. Walton's collaboration.

Top Co-Authors

Avatar

Fiona A. Harrison

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Finn Erland Christensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Stern

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. C. Fabian

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

S. E. Boggs

University of California

View shared research outputs
Top Co-Authors

Avatar

Felix Fürst

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge