D. James Donaldson
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. James Donaldson.
Science | 2016
Stéphanie Rossignol; Liselotte Tinel; Angelica Bianco; Monica Passananti; Marcello Brigante; D. James Donaldson; Christian George
Active fatty acid layers Saturated fatty acids are considered to be inert, but they can be surprisingly reactive when present as a coating at an air-water interface. Rossignol et al. show that nonanoic acid is photochemically active when it is present as a monolayer on a water surface (see the Perspective by Vaida). Fatty acids are ubiquitous in the environment, and their photochemical processing could have a substantial impact on local ozone and particle formation. Science, this issue p. 699; see also p. 650 Fatty acids display a rich photochemistry as a monolayer on aqueous surfaces and may affect ozone formation. Although fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over a monolayer of NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase, and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet-state NA molecules excited by direct absorption of actinic light at the water surface. Because fatty acids–covered interfaces are ubiquitous in the environment, such photochemical processing will have a substantial impact on local ozone and particle formation.
Journal of the American Chemical Society | 2015
Hongbo Fu; Raluca Ciuraru; Yoan Dupart; Monica Passananti; Liselotte Tinel; Stéphanie Rossignol; Sébastien Perrier; D. James Donaldson; Jianmin Chen; Christian George
We report on experiments that probe photosensitized chemistry at the air/water interface, a region that does not just connect the two phases but displays its own specific chemistry. Here, we follow reactions of octanol, a proxy for environmentally relevant soluble surfactants, initiated by an attack by triplet-state carbonyl compounds, which are themselves concentrated at the interface by the presence of this surfactant. Gas-phase products are determined using PTR-ToF-MS, and those remaining in the organic layer are determined by ATR-FTIR spectroscopy and HPLC-HRMS. We observe the photosensitized production of carboxylic acids as well as unsaturated and branched-chain oxygenated products, compounds that act as organic aerosol precursors and had been thought to be produced solely by biological activity. A mechanism that is consistent with the observations is detailed here, and the energetics of several key reactions are calculated using quantum chemical methods. The results suggest that the concentrating nature of the interface leads to its being a favorable venue for radical reactions yielding complex and functionalized products that themselves could initiate further secondary chemistry and new particle formation in the atmospheric environment.
Accounts of Chemical Research | 2014
Tara F. Kahan; Sumi N. Wren; D. James Donaldson
Chemical interactions at the air-ice interface are of great importance to local atmospheric chemistry but also to the concentrations of pollutants deposited onto natural snow and ice. However, the study of such processes has been hampered by the lack of general, surface-specific probes. Even seemingly basic chemical properties, such as the local concentration of chemical compounds, or the pH at the interface, have required the application of assumptions about solute distributions in frozen media. The measurements that have been reported have tended for the most part to focus on entire ice or snow samples, rather than strictly the frozen interface with the atmosphere. We have used glancing-angle laser spectroscopy to interrogate the air-ice interface; this has yielded several insights into the chemical interactions there. The linear fluorescence and Raman spectra thus measured have the advantage of easy interpretability; careful experimentation can limit their probe depth to that which is relevant to atmospheric heterogeneous processes. We have used these techniques to show that the environment at the interface between air and freshwater ice surfaces is distinct from that at the interface between air and liquid water. Acids such as HCl that adsorb to ice surfaces from the gas phase result in significantly different pH responses than those at liquid water surfaces. Further, the solvation of aromatic species is suppressed at freshwater ice surfaces compared with that at liquid water surfaces, leading to extensive self-association of aromatics at ice surfaces. Photolysis kinetics of these species are much faster than at liquid water surfaces; this can sometimes (but not always) be explained by red shifts in the absorption spectra of self-associated aromatics increasing the extent to which solar radiation is absorbed. The environment presented by frozen saltwater surfaces, in contrast, appears to be reasonably well-described by liquid water. The extent of hydrogen bonding and the solvation of adsorbed species are similar at liquid water surfaces and at frozen saltwater surfaces. Adsorbed acids and bases evoke similar pH responses at frozen saltwater ice surfaces and liquid water surfaces, and photochemical kinetics of at least some aromatic compounds at frozen saltwater ice surfaces are well-described by kinetics in liquid water. These differences are not observed in experiments that interrogate the entire ice sample (i.e., that do not distinguish between processes occurring in liquid regions within bulk ice and those at the air-ice interface). Our work has shown that in general, the chemistry occurring at salty frozen interfaces is well described as being cold aqueous chemistry, whereas that seen at the pure ice interface is not. These findings have significant implications for heterogeneous atmospheric processes in ice-covered environments.
Environmental Science & Technology | 2016
Liselotte Tinel; Stéphanie Rossignol; Angelica Bianco; Monica Passananti; Sébastien Perrier; Xinming Wang; Marcello Brigante; D. James Donaldson; Christian George
Interfaces are ubiquitous in the environment and many atmospheric key processes, such as gas deposition, aerosol, and cloud formation are, at one stage or another, strongly impacted by physical and chemical processes occurring at interfaces. Here, the photoinduced chemistry of an air/water interface coated with nonanoic acid—a fatty acid surfactant we use as a proxy for chemically complex natural aqueous surface microlayers—was investigated as a source of volatile and semivolatile reactive organic species. The carboxylic acid coating significantly increased the propensity of photosensitizers, chosen to mimic those observed in real environmental waters, to partition to the interface and enhance reactivity there. Photochemical formation of functionalized and unsaturated compounds was systematically observed upon irradiation of these coated surfaces. The role of a coated interface appears to be critical in providing a concentrated medium allowing radical–radical reactions to occur in parallel with molecular oxygen additions. Mechanistic insights are provided from extensive analysis of products observed in both gas and aqueous phases by online switchable reagent ion-time of flight-mass spectrometry and by off-line ultraperformance liquid chromatography coupled to a Q Exactive high resolution mass spectrometer through heated electrospray ionization, respectively.
Eos, Transactions American Geophysical Union | 2012
Paul B. Shepson; Parisa A. Ariya; Clara Deal; D. James Donaldson; Thomas A. Douglas; Brice Loose; Ted Maksym; Patricia A. Matrai; Lynn M. Russell; Benjamin T. Saenz; Jacqueline Stefels; Nadja Steiner
In the past few decades, there has been enormous growth in scientific studies of physical, chemical, and biological interactions among reservoirs in polar regions. This has come, in part, as a result of a few significant discoveries: There is dramatic halogen chemistry that occurs on and above the sea ice in the springtime that destroys lower tropospheric ozone and mercury [Simpson et al., 2007; Steffen et al., 2008], the sunlit snowpack is very photochemically active [Grannas et al., 2007], biology as a source of organic compounds plays a pivotal role in these processes, and these processes are occurring in the context of rapidly changing polar regions under climate feedbacks that are as of yet not fully understood [Serreze and Barry, 2011]. Stimulated by the opportunities of the International Polar Year (IPY, 2007-2009), a number of large-scale field studies in both polar environments have been undertaken, aimed at the study of the complex biotic and abiotic processes occurring in all phases (see Figure 1). Sea ice plays a critical role in polar environments: It is a highly reflective surface that interacts with radiation; it provides a habitat for mammals and micro-organisms alike, thus playing a key role in polar trophic processes and elemental cycles; and it creates a saline environment for chemical processes that facilitate release of halogenated gases that contribute to the atmospheres ability to photochemically cleanse itself in an otherwise low-radiation environment. Ocean-air and sea ice-air interfaces also produce aerosol particles that provide cloud condensation nuclei.
Angewandte Chemie | 2016
Monica Passananti; Lingdong Kong; Jing Shang; Yoan Dupart; Sébastien Perrier; Jianmin Chen; D. James Donaldson; Christian George
The heterogeneous reaction between SO2 and unsaturated compounds results in the efficient production of organosulfates for several fatty acids and long-chain alkenes. The presence of an acid group, the physical state of the reactants (solid or liquid), the nature of the double bond (cis, trans, terminal), and the use of light irradiation all have an impact on the reaction rate. The reaction was investigated using different set-ups (coated flow tube, aerosol flow tube, and diffuse reflectance infrared Fourier transform cell). The reaction products were identified by high-resolution mass spectrometry and the impact of this reaction on organosulfate formation in the atmosphere is discussed.
Scientific Reports | 2017
Peter A. Alpert; Raluca Ciuraru; Stéphanie Rossignol; Monica Passananti; Liselotte Tinel; Sébastien Perrier; Yoan Dupart; Sarah S. Steimer; Markus Ammann; D. James Donaldson; Christian George
Organic interfaces that exist at the sea surface microlayer or as surfactant coatings on cloud droplets are highly concentrated and chemically distinct from the underlying bulk or overlying gas phase. Therefore, they may be potentially unique locations for chemical or photochemical reactions. Recently, photochemical production of volatile organic compounds (VOCs) was reported at a nonanoic acid interface however, subsequent secondary organic aerosol (SOA) particle production was incapable of being observed. We investigated SOA particle formation due to photochemical reactions occurring at an air-water interface in presence of model saturated long chain fatty acid and alcohol surfactants, nonanoic acid and nonanol, respectively. Ozonolysis of the gas phase photochemical products in the dark or under continued UV irradiation both resulted in nucleation and growth of SOA particles. Irradiation of nonanol did not yield detectable VOC or SOA production. Organic carbon functionalities of the SOA were probed using X-ray microspectroscopy and compared with other laboratory generated and field collected particles. Carbon-carbon double bonds were identified in the condensed phase which survived ozonolysis during new particle formation and growth. The implications of photochemical processes occurring at organic coated surfaces are discussed in the context of marine SOA particle atmospheric fluxes.
Scientific Reports | 2016
D. James Donaldson; Jay A. Kroll; Veronica Vaida
Sulfur chemistry is of great interest to the atmospheric chemistry of several planets. In the presence of water, oxidized sulfur can lead to new particle formation, influencing climate in significant ways. Observations of sulfur compounds in planetary atmospheres when compared with model results suggest that there are missing chemical mechanisms. Here we propose a novel mechanism for the formation of sulfurous acid, which may act as a seed for new particle formation. In this proposed mechanism, the lowest triplet state of SO2 (3B1), which may be accessed by near-UV solar excitation of SO2 to its excited 1B1 state followed by rapid intersystem crossing, reacts directly with water to form H2SO3 in the gas phase. For ground state SO2, this reaction is endothermic and has a very high activation barrier; our quantum chemical calculations point to a facile reaction being possible in the triplet state of SO2. This hygroscopic H2SO3 molecule may act as a condensation nucleus for water, giving rise to facile new particle formation (NPF).
Journal of Physical Chemistry A | 2017
Nicole A. Combe; D. James Donaldson
We present a systematic study of the effect of solutes on the evaporation rate of acoustically levitated aqueous solution droplets by suspending individual droplets in a zero-relative humidity environment and measuring their size as a function of time. The ratios of the early time evaporation rates of six simple salts (NaCl, NaBr, NaNO3, KCl, MgCl2, CaCl2) and malonic acid to that of water are in excellent agreement with predictions made by modifying the Maxwell equation to include the time-dependent water activity of the evaporating aqueous salt solution droplets. However, the early time evaporation rates of three ammonium salt solutions (NH4Cl, NH4NO3, (NH4)2SO4) are not significantly different from the evaporation rate of pure water. This finding is in accord with a previous report that ammonium sulfate does not depress the evaporation rate of its solutions, despite reducing its water vapor pressure, perhaps due to specific surface effects. At longer evaporation times, as the droplets approach crystallization, all but one (MgCl2) of the solution evaporation rates are well described by the modified Maxwell equation.
Journal of Physical Chemistry A | 2017
Karen J. Morenz; D. James Donaldson
Surface chemistry on ice can play an important role in atmospheric composition, but uncertainties in the chemical partitioning within ice samples has hindered the development of accurate models of these systems. Using Raman microscopy, we examine the nitrate distribution in ice and liquid samples containing environmentally relevant concentrations of sodium chloride, sodium bromide, and sea salt analogue Instant Ocean. Nitrate is enhanced at the surface compared to in the bulk in all frozen samples but to different degrees depending on the added salt. A large variation of nitrate in the horizontal dimension of frozen samples provides direct evidence that it congregates in pockets or grain boundaries within the crystal. In these pockets, nitrate experiences a solution-like environment, whereas at the surface nitrate sometimes forms solid crystals.