Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Kirk Nordstrom is active.

Publication


Featured researches published by D. Kirk Nordstrom.


Arsenic in Ground Water: Geochemistry and Occurrence | 2003

Arsenic thermodynamic data and environmental geochemistry

D. Kirk Nordstrom; Donald G. Archer

Thermodynamic data are critical as input to models that attempt to interpret the geochemistry of environmentally important elements such as arsenic. Unfortunately, the thermodynamic data for mineral phases of arsenic and their solubilities have been highly discrepant and inadequately evaluated. This paper presents the results of a simultaneous weighted least-squares multiple regression on more than 75 thermochemical measurements of elemental arsenic, arsenic oxides, arsenic sulfides, their aqueous hydrolysis, and a few related reactions. The best-fitted thermodynamic database is related to mineral stability relationships for native arsenic, claudetite, arsenolite, orpiment, and realgar with pe-pH diagrams and with known occurrences and mineral transformations in the environment to test the compatibility of thermodynamic measurements and calculations with observations in nature. The results provide a much more consistent framework for geochemical modeling and the interpretation of geochemical processes involving arsenic in the environment.


Chemical Geology | 1992

Chemical, crystallographic and stable isotopic properties of alunite and jarosite from acid—Hypersaline Australian lakes

Charles N. Alpers; Robert O. Rye; D. Kirk Nordstrom; L.Doug White; Bi-Shia King

Abstract Chemical, crystallographic and isotopic analyses were made on samples containing alunite and jarosite from the sediments of four acid, hypersaline lakes in southeastern and southwestern Australia. The alunite and jarosite are K-rich with relatively low Na contents based on chemical analysis and determination of unit cell dimensions by powder X-ray diffraction. Correcting the chemical analyses of fine-grained mineral concentrates from Lake Tyrrell, Victoria, for the presence of halite, silica and poorly crystalline aluminosilicates, the following formulas indicate best estimates for solid-solution compositions: for alunite, K0.87Na0.04(H3O)0.09(Al0.92Fe0.08)3(SO4)2(OH)6 and for jarosite, K0.89Na0.07(H3O)0.04(Fe0.80Al0.20)3(SO4)2(OH)6. The δD-values of alunite are notably larger than those for jarosite from Lake Tyrrell and it appears that the minerals have closely approached hydrogen isotope equilibrium with the acidic regional groundwaters. The δD results are consistent with a fractionation ∼60–70‰ between alunite and jarosite observed in other areas. However, interpretation of δD results is complicated by large variability in fluid δDH2O from evaporation, mixing and possible ion hydration effects in the brine. δD-values of water derived from jarosite by step-wise heating tend to be smaller at 250°C, at which temperature hydronium and other non-hydroxyl water is liberated, than at 550°C, where water is derived from the hydroxyl site, but the differences are not sufficiently different to invalidate measurements of total δD obtained by conventional, single-step heating methods. δ34S-values for alunite and jarosite from the four lakes (+19.7 to +21.2‰ CDT) and for aqueous sulfate from Lake Tyrrell (+18.3 to +19.8‰) are close to the values for modern evaporites ( +21.5 ±0.3‰ ) and seawater ( +20±0.5‰ ) and are probably typical of seawater-derived aerosols in arid coastal environments. δ34-S-values slightly smaller than that for seawater may reflect a minor contribution of sulfate from pyrite oxidation in the Parilla Sand or a reservoir effect from removal of gypsum enriched in 34S. δ18OSO4-values for alunite from three Western Australia lakes (+17.8 to +18.3‰ V-SMOW), for alunite and jarosite from Lake Tyrrell (+22.6 to +24.9‰) and for aqueous sulfate from Lake Tyrrell (+17.3 to +19.0‰) are much larger than the average value for seawater (+9.6‰). The data suggest an approach to 18O-16O equilibrium between aqueous sulfate and groundwater, which is known from experimental studies to be possible at low pH and low temperatures, but has not been previously documented in nature. A residence time of ∼0.1–1 kyr for sulfate in acidic water (pH 3–4) is needed to achieve the apparent partial oxygen exchange, using previously published data of R.M. Lloyd.


Chemical Geology | 2000

REE speciation in low-temperature acidic waters and the competitive effects of aluminum

María José Gimeno Serrano; Luis Francisco Auqué Sanz; D. Kirk Nordstrom

Abstract The effect of simultaneous competitive speciation of dissolved rare earth elements (REEs) in acidic waters (pH 3.3 to 5.2) has been evaluated by applying the PHREEQE code to the speciation of water analyses from Spain, Brazil, USA, and Canada. The main ions that might affect REE are Al3+, F−, SO42−, and PO43−. Fluoride, normally a significant complexer of REEs, is strongly associated with Al3+ in acid waters and consequently has little influence on REEs. The inclusion of aluminum concentrations in speciation calculations for acidic waters is essential for reliable speciation of REEs. Phosphate concentrations are too low (10−4 to 10−7 m) to affect REE speciation. Consequently, SO42− is the only important complexing ligand for REEs under these conditions. According to Millero [Millero, F.J., 1992. Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength. Geochim. Cosmochim. Acta, 56, 3123–3132], the lanthanide sulfate stability constants are nearly constant with increasing atomic number so that no REE fractionation would be anticipated from aqueous complexation in acidic waters. Hence, REE enrichments or depletions must arise from mass transfer reactions.


Molecular Systems Biology | 2010

Ecological distribution and population physiology defined by proteomics in a natural microbial community

Ryan S. Mueller; Vincent J. Denef; Linda H. Kalnejais; K. Blake Suttle; Brian C. Thomas; Paul Wilmes; Richard L. Smith; D. Kirk Nordstrom; R. Blaine McCleskey; Manesh B Shah; Nathan C. VerBerkmoes; Robert L. Hettich; Jillian F. Banfield

An important challenge in microbial ecology is developing methods that simultaneously examine the physiology of organisms at the molecular level and their ecosystem level interactions in complex natural systems. We integrated extensive proteomic, geochemical, and biological information from 28 microbial communities collected from an acid mine drainage environment and representing a range of biofilm development stages and geochemical conditions to evaluate how the physiologies of the dominant and less abundant organisms change along environmental gradients. The initial colonist dominates across all environments, but its proteome changes between two stable states as communities diversify, implying that interspecies interactions affect this organisms metabolism. Its overall physiology is robust to abiotic environmental factors, but strong correlations exist between these factors and certain subsets of proteins, possibly accounting for its wide environmental distribution. Lower abundance populations are patchier in their distribution, and proteomic data indicate that their environmental niches may be constrained by specific sets of abiotic environmental factors. This research establishes an effective strategy to investigate ecological relationships between microbial physiology and the environment for whole communities in situ.


Hydrobiologia | 2000

Ecogeochemistry of the subsurface food web at pH 0–2.5 in Iron Mountain, California, U.S.A.

Eleanora I. Robbins; Teresa M. Rodgers; Charles N. Alpers; D. Kirk Nordstrom

Pyrite oxidation in the underground mining environment of Iron Mountain, California, has created the most acidic pH values ever reported in aquatic systems. Sulfate values as high as 120 000 mg l−1 and iron as high as 27 600 mg l−1 have been measured in the mine water, which also carries abundant other dissolved metals including Al, Zn, Cu, Cd, Mn, Sb and Pb. Extreme acidity and high metal concentrations apparently do not preclude the presence of an underground acidophilic food web, which has developed with bacterial biomass at the base and heliozoans as top predators. Slimes, oil-like films, flexible and inflexible stalactites, sediments, water and precipitates were found to have distinctive communities. A variety of filamentous and non-filamentous bacteria grew in slimes in water having pH values <1.0. Fungal hyphae colonize stalactites dripping pH 1.0 water; they may help to form these drip structures. Motile hypotrichous ciliates and bdelloid rotifers are particularly abundant in slimes having a pH of 1.5. Holdfasts of the iron bacterium Leptothrix discophora attach to biofilms covering pools of standing water having a pH of 2.5 in the mine. The mine is not a closed environment – people, forced air flow and massive flushing during high intensity rainfall provide intermittent contact between the surface and underground habitats, so the mine ecosystem probably is not a restricted one.


Water Air and Soil Pollution | 1996

TRACE METAL SPECIATION IN NATURAL WATERS: COMPUTATIONAL VS. ANALYTICAL

D. Kirk Nordstrom

Improvements in the field sampling, preservation, and determination of trace metals in natural waters have made many analyses more reliable and less affected by contamination. The speciation of trace metals, however, remains controversial. Chemical model speciation calculations do not necessarily agree with voltammetric, ion exchange, potentiometric, or other analytical speciation techniques. When metal-organic complexes are important, model calculations are not usually helpful and on-site analytical separations are essential. Many analytical speciation techniques have serious interferences and only work well for a limited subset of water types and compositions. A combined approach to the evaluation of speciation could greatly reduce these uncertainties. The approach proposed would be to (1) compare and contrast different analytical techniques with each other and with computed speciation, (2) compare computed trace metal speciation with reliable measurements of solubility, potentiometry, and mean activity coefficients, and (3) compare different model calculations with each other for the same set of water analyses, especially where supplementary data on speciation already exist. A comparison and critique of analytical with chemical model speciation for a range of water samples would delineate the useful range and limitations of these different approaches to speciation. Both model calculations and analytical determinations have useful and different constraints on the range of possible speciation such that they can provide much better insight into speciation when used together. Major discrepancies in the thermodynamic databases of speciation models can be evaluated with the aid of analytical speciation, and when the thermodynamic models are highly consistent and reliable, the sources of error in the analytical speciation can be evaluated. Major thermodynamic discrepancies also can be evaluated by simulating solubility and activity coefficient data and testing various chemical models for their range of applicability. Until a comparative approach such as this is taken, trace metal speciation will remain highly uncertain and controversial.


Geology | 2016

Dissolved gases in hydrothermal (phreatic) and geyser eruptions at Yellowstone National Park, USA

Shaul Hurwitz; Laura E. Clor; R. Blaine McCleskey; D. Kirk Nordstrom; Andrew G. Hunt; William C. Evans

Multiphase and multicomponent fluid flow in the shallow continental crust plays a significant role in a variety of processes over a broad range of temperatures and pressures. The presence of dissolved gases in aqueous fluids reduces the liquid stability field toward lower temperatures and enhances the explosivity potential with respect to pure water. Therefore, in areas where magma is actively degassing into a hydrothermal system, gas-rich aqueous fluids can exert a major control on geothermal energy production, can be propellants in hazardous hydrothermal (phreatic) eruptions, and can modulate the dynamics of geyser eruptions. We collected pressurized samples of thermal water that preserved dissolved gases in conjunction with precise temperature measurements with depth in research well Y-7 (maximum depth of 70.1 m; casing to 31 m) and five thermal pools (maximum depth of 11.3 m) in the Upper Geyser Basin of Yellowstone National Park, USA. Based on the dissolved gas concentrations, we demonstrate that CO 2 mainly derived from magma and N 2 from air-saturated meteoric water reduce the near-surface saturation temperature, consistent with some previous observations in geyser conduits. Thermodynamic calculations suggest that the dissolved CO 2 and N 2 modulate the dynamics of geyser eruptions and are likely triggers of hydrothermal eruptions when recharged into shallow reservoirs at high concentrations. Therefore, monitoring changes in gas emission rate and composition in areas with neutral and alkaline chlorine thermal features could provide important information on the natural resources (geysers) and hazards (eruptions) in these areas.


Chinese Journal of Geochemistry | 2006

Rapid natural acid weathering, physical erosion, and debris-flow hazards in scar areas developed on hydrothermally-altered rocks along the Red River Valley near Questa, New Mexico, USA

Geoffrey S. Plumlee; Kirk R. Vincent; Steve Ludington; Philip L. Verplanck; D. Kirk Nordstrom

In southern Rocky Mountains, catchments characterized by acidic, metalliferous waters that are relatively unaffected by human activity usually occur within areas that have active or historical mining activity. The US Geological Survey has utilized these mineralized but unmined catchments to constrain geochemical processes that control the surfaceand ground-water chemistry associated with near surface acid weathering as well as to estimate premining conditions. Study areas include the upper Animas River watershed, Lake City, Mt. Emmons, and Montezuma in Colorado and Questa in New Mexico. Although host-rock lithologies range from Precambrian gneisses to Cretaceous sedimentary units to Tertiary volcanic complexes, mineralization is Tertiary in age and associated with intermediate to felsic composition, porphyritic plutons. Pyrite is ubiquitous. Variability of metal concentrations in water is caused by two main factors: mineralogy and hydrology. Parameters that potentially affect water chemistry include: host-rock lithology, intensity of hydrothermal alteration, sulfide mineralogy and chemistry, gangue mineralogy, length of flow path, precipitation, evaporation, and redox conditions. Springs and headwater streams have pH values as low as 2.5, sulfate up to 3700 mg/L and high dissolved metal concentrations (for example: A1 up to 170 rag/L; Fe up to 250 mg/L; Cu up to 3.5 mg/L and Zn up to 14 mg/L). With the exception of evaporative waters, the lowest pH values and highest Fe and A1 concentrations occur in water draining the most intense hydrothermally altered areas consisting of the mineral assemblage quartz-sericite-pyrite. Stream beds tend to be coated with iron floc, and some reaches are underlain by ferricrete. When iron-rich ground water interacts with oxygenated waters in the stream or hyporheic zone, ferrous iron is oxidized to ferric iron, which is less soluble, leading to the precipitation of iron oxyhydroxides. Ground-water wells have been drilled and sampled in two unmined, alpine catchments to characterize constituent concentrations, to identify hydrogeochemical processes controlling constituent concentrations, to determine rock hydraulic properties, and to delineate flow paths. By using an integrated approach to investigating surface and ground waters in these acidic catchments a more complete understanding of the hydrogeologic framework is gained.


Environmental Microbiology | 2017

Sulfolobus islandicus meta-populations in Yellowstone National Park hot springs

Kate M. Campbell; Angela Kouris; Whitney E. England; Rika E. Anderson; R. Blaine McCleskey; D. Kirk Nordstrom; Rachel J. Whitaker

Summary Abiotic and biotic forces shape the structure and evolution of microbial populations. We investigated forces that shape the spatial and temporal population structure of Sulfolobus islandicus by comparing geochemical and molecular analysis from seven hot springs in five regions sampled over 3 years in Yellowstone National Park. Through deep amplicon sequencing, we uncovered 148 unique alleles at two loci whose relative frequency provides clear evidence for independent populations in different hot springs. Although geography controls regional geochemical composition and population differentiation, temporal changes in population were not explained by corresponding variation in geochemistry. The data suggest that the influence of extinction, bottleneck events and/or selective sweeps within a spring and low migration between springs shape these populations. We suggest that hydrologic events such as storm events and surface snowmelt runoff destabilize smaller hot spring environments with smaller populations and result in high variation in the S. islandicus population over time. Therefore, physical abiotic features such as hot spring size and position in the landscape are important factors shaping the stability and diversity of the S. islandicus meta‐population within Yellowstone National Park.


Archive | 2014

Modeling low-temperature geochemical processes: Chapter 2

D. Kirk Nordstrom; Kate M. Campbell

This chapter provides an overview of geochemical modeling that applies to water–rock interactions under ambient conditions of temperature and pressure. Topics include modeling definitions, historical background, issues of activity coefficients, popular codes and databases, examples of modeling common types of water–rock interactions, and issues of model reliability. Examples include speciation, microbial redox kinetics and ferrous iron oxidation, calcite dissolution, pyrite oxidation, combined pyrite and calcite dissolution, dedolomitization, seawater–carbonate groundwater mixing, reactive-transport modeling in streams, modeling catchments, and evaporation of seawater. The chapter emphasizes limitations to geochemical modeling: that a proper understanding and ability to communicate model results well are as important as completing a set of useful modeling computations and that greater sophistication in model and code development is not necessarily an advancement. If the goal is to understand how a particular geochemical system behaves, it is better to collect more field data than rely on computer codes.

Collaboration


Dive into the D. Kirk Nordstrom's collaboration.

Top Co-Authors

Avatar

R. Blaine McCleskey

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Charles N. Alpers

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

James W. Ball

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Kate M. Campbell

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Philip L. Verplanck

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phillip L. Verplanck

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Richard J. Goldfarb

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Seth H. Mueller

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

E. K. Youcha

University of Alaska Fairbanks

View shared research outputs
Researchain Logo
Decentralizing Knowledge