Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D Kyroussis is active.

Publication


Featured researches published by D Kyroussis.


Muscle & Nerve | 1996

Quadriceps strength and fatigue assessed by magnetic stimulation of the femoral nerve in man

Michael I. Polkey; D Kyroussis; Carl H. Hamnegard; G. H. Mills; Malcolm Green; John Moxham

There is no nonvolitional method of assessing quadriceps strength which both supramaximally activates the muscle and is acceptable to subjects. In 10 normal subjects and 10 patients with suspected muscle weakness we used magnetic stimulation of the femoral nerve to elicit an isometric twitch and measured twitch tension (TwQ), surface electromyogram in addition to the maximum voluntary contraction force (MVC). Supramaximality was achieved in all subjects at a mean of 83% of maximum stimulator output. When supramaximal, TwQ was reproducible (mean coefficient of variation 3.6%, range 0.7–10.9) and correlated well with MVC (r2 = 0.83, P < 0.001). In 7 normal subjects we measured TwQ before and after a fatiguing protocol; after 20 min TwQ was a mean of 55% (range 29–77%) of baseline and remained substantially reduced at 90 min. Magnetic femoral nerve stimulation is a painless, supramaximal method of assessing quadriceps strength and fatigue which is likely to be of value in clinical and physiological studies.


Thorax | 1994

Potentiation of diaphragmatic twitch after voluntary contraction in normal subjects.

S Wragg; C H Hamnegard; J Road; D Kyroussis; J Moran; M Green; John Moxham

BACKGROUND--Skeletal muscle twitch responses may be transiently increased by previous contractions, a phenomenon termed twitch potentiation. The aim of this study was to examine the extent and time course of diaphragmatic twitch potentiation and its relationship to both the magnitude and duration of the preceding voluntary diaphragmatic contraction. METHODS--Twitch transdiaphragmatic pressure (PDI) was measured in six normal subjects, before and after voluntary diaphragm contractions of 100%, 75%, 50%, and 25% of maximum PDI (PDImax) sustained for five and 10 seconds. RESULTS--Twitch PDI was significantly increased after 100%, 75%, and 50% contractions. Following maximal contractions sustained for 10 seconds the mean increase in twitch PDI was 52%. Following 50% contractions sustained for five seconds the mean increase in twitch height was 28%. In all runs twitch PDI returned to rested levels within 20 minutes. CONCLUSIONS--Twitch potentiation can be substantial, even following submaximal contractions, and must be taken into account when twitch pressure is used to assess diaphragm contractility.


European Respiratory Journal | 1994

Portable measurement of maximum mouth pressures

C H Hamnegard; S Wragg; D Kyroussis; R Aquilina; John Moxham; M Green

We have compared a small portable mouth pressure meter (MPM) to our laboratory standard (LS) pressure recording equipment in order to evaluate this new device. The mouth pressure meter measures and displays as a digital read-out peak pressure for inspiratory and expiratory efforts. It samples the signal at 16 Hz, and an integral microprocessor is programmed to determine and display the maximum pressure averaged over one second both during inspiratory and expiratory manoeuvres (PImax and PEmax, respectively). A fine bore catheter connecting the mouthpiece of the mouth pressure meter to a Validyne pressure transducer enabled simultaneous measurement of pressure, which was analysed by LabVIEW, running on a Macintosh Quadra 700 computer. We studied 13 normal subjects and 11 patients with respiratory disease. Each subject performed inspiratory and five expiratory efforts. The values displayed from the mouth pressure meter were manually recorded. The mouth pressure meter reliably and accurately measured peak pressure and maximal pressure both for inspiratory and expiratory efforts in normals and patients. The mean +/- SD difference when compared with the Validyne method was 0.19 +/- 0.12 and -0.04 +/- 0.12 kPa, for PImax and PEmax, respectively. This portable device should be useful to measure mouth pressures, not only in the routine lung function laboratory but also at the bedside and in the clinic.


Thorax | 1995

Unilateral magnetic stimulation of the phrenic nerve.

G. H. Mills; D Kyroussis; C H Hamnegard; S Wragg; John Moxham; M Green

BACKGROUND--Electrical stimulation of the phrenic nerve is a useful non-volitional method of assessing diaphragm contractility. During the assessment of hemidiaphragm contractility with electrical stimulation, low twitch transdiaphragmatic pressures may result from difficulty in locating and stimulating the phrenic nerve. Cervical magnetic stimulation overcomes some of these problems, but this technique may not be absolutely specific and does not allow the contractility of one hemidiaphragm to be assessed. This study assesses both the best means of producing supramaximal unilateral magnetic phrenic stimulation and its reproducibility. This technique is then applied to patients. METHODS--The ability of four different magnetic coils to produce unilateral phrenic stimulation in five normal subjects was assessed from twitch transdiaphragmatic pressure (TwPDI) measurements and diaphragmatic electromyogram (EMG) recordings. The results from magnetic stimulation were compared with those from electrical stimulation. To determine whether the magnetic field affects the contralateral phrenic nerve as well as the intended phrenic nerve, EMG recordings from each hemidiaphragm were compared during stimulation on the same side and the opposite side relative to the recording electrodes. The EMG recordings were made from skin surface electrodes in five normal subjects and from needle electrodes placed in the diaphragm during cardiac surgery in six patients. Similarly, the direction of hemidiaphragm movement was evaluated by ultrasonography. To determine the usefulness of the technique in patients the 43 mm mean diameter double coil was used in 54 patients referred for assessment of possible respiratory muscle weakness. These results were compared with unilateral electrical phrenic stimulation, maximum sniff PDI, and TwPDI during cervical magnetic stimulation. RESULTS--In the five normal subjects supramaximal stimulation was established for eight out of 10 phrenic nerves with the 43 mm double coil. Supramaximal unilateral magnetic stimulation produced a higher TwPDI than electrical stimulation (mean (SD) 13.4 (2.5) cm H2O with 35 mm coil; 14.1 (3.8) cm H2O with 43 mm coil; 10.0 (1.7) cm H2O with electrical stimulation). Spread of the magnetic field to the opposite phrenic nerve produced a small amplitude contralateral diaphragm EMG measured from skin surface electrodes which reached a mean of 15% of the maximum EMG amplitude produced by ipsilateral stimulation. Similarly, in six patients with EMG activity recorded directly from needle electrodes, the contralateral spread of the magnetic field produced EMG activity up to a mean of 3% and a maximum of 6% of that seen with ipsilateral stimulation. Unilateral magnetic stimulation of the phrenic nerve was rapidly achieved and well tolerated. In the 54 patients unilateral magnetic TwPDI was more closely related than unilateral electrical TwPDI to transdiaphragmatic pressure produced during maximum sniffs and cervical magnetic stimulation. Unilateral magnetic stimulation eliminated the problem of producing a falsely low TwPDI because of technical difficulties in locating and adequately stimulating the nerve. Eight patients with unilateral phrenic nerve paresis, as indicated by a unilaterally elevated hemidiaphragm on a chest radiograph and maximum sniff PDI consistent with hemidiaphragm weakness, were all accurately identified by unilateral magnetic stimulation. CONCLUSIONS--Unilateral magnetic phrenic nerve stimulation is easy to apply and is a reproducible technique in the assessment of hemidiaphragm contractility. It is well tolerated and allows hemidiaphragm contractility to be rapidly and reliably assessed because precise positioning of the coils is not necessary. This may be particularly useful in patients. In addition, the anterolateral positioning of the coil allows the use of the magnet in the supine patient such as in the operating theatre or intensive care unit.


Thorax | 1995

Mouth pressure in response to magnetic stimulation of the phrenic nerves.

C H Hamnegåard; S Wragg; D Kyroussis; G. H. Mills; B. Bake; M Green; John Moxham

BACKGROUND--Diaphragm strength can be assessed by the measurement of gastric (TW PGA), oesophageal (TW POES), and transdiaphragmatic (TW PDI) pressure in response to phrenic nerve stimulation. However, this requires the passage of two balloon catheters. A less invasive method of assessing diaphragm contractility during stimulation of the phrenic nerves would be of clinical value. A study was undertaken to determine whether pressure measured at the mouth (TW PM) during magnetic stimulation of the phrenic nerves accurately reflects TW POES, and to investigate the relations between TW PM and TW PDI; and also to see whether glottic closure and twitch potentiation can be avoided during these measurements. METHODS--Eight normal subjects and eight patients with suspected respiratory muscle weakness without lung disease were studied. To prevent glottic closure magnetic stimulation of the phrenic nerves was performed at functional residual capacity during a gentle expiratory effort against an occluded airway incorporating a small leak. TW PDI, TW POES, and TW PM were recorded. Care was taken to avoid potentiation of the diaphragm. RESULTS--In normal subjects mean TW PM was 13.7 cm H2O (range 11.3-16.1) and TW POES was 13.3 cm H2O (range 10.4-15.9) with a mean (SD) difference of 0.4 (0.81) cm H2O. In patients mean TW PM was 9.1 cm H2O (range 0.5-18.2) and TW POES was 9.3 (range 0.7-18.7) with a mean (SD) difference of -0.2 (0.84) cm H2O. The relation between TW PM and TW PDI was less close but was well described by a linear function. In patients with diaphragm weakness (low sniff PDI) TW PM was < 10 cm H2O. CONCLUSIONS--TW PM reliably reflects TW POES and can be used to predict TW PDI in normal subjects and patients without lung disease. TW PM may therefore be a promising non-invasive, non-volitional technique for the assessment of diaphragm strength.


European Respiratory Journal | 1996

Diaphragm fatigue following maximal ventilation in man

C H Hamnegard; S Wragg; D Kyroussis; G. H. Mills; Michael I. Polkey; J Moran; J Road; B Bake; Malcolm Green; John Moxham

When highly motivated normal subjects perform maximal isocapnic ventilation, a substantial fall in ventilation is observed during the first minute associated with slowing of the maximum relaxation rate (MRR) of the inspiratory muscles. This suggests that these muscles are excessively loaded, raising the possibility that overt contractile failure of the diaphragm contributes to the fall in ventilation. We therefore investigated the effect of maximal isocapnic ventilation (MIV) on twitch transdiaphragmatic pressure (Pdi,Tw) elicited by cervical magnetic stimulation. We measured Pdi,Tw before and after 2 min MIV in nine normal subjects. Initial mean (SD) ventilation for the nine subjects was 196 (15) L.min-1 falling by 35% at 1 min. Pdi,Tw fell following MIV, at 10 min was reduced by 24%, and remained substantially reduced 90 min after MIV. No change in Pdi,Tw was observed during control studies in which subjects were studied with the same protocol but omitting MIV. We conclude that diaphragmatic contractility is reduced after 2 min maximal isocapnic ventilation and diaphragmatic fatigue may be a limiting factor in maximal ventilation in man.


Thorax | 1998

Measurement of sniff nasal and diaphragm twitch mouth pressure in patients.

P. D. Hughes; M I Polkey; D Kyroussis; C H Hamnegard; John Moxham; M Green

BACKGROUND: Inspiratory muscle weakness is a recognised cause of unexplained dyspnoea. It may be suggested by the finding of a low static inspiratory mouth pressure (MIP), but MIP is a difficult test to perform, with a wide normal range; a low MIP may also occur if the patient has not properly performed the manoeuvre. Further investigation conventionally requires balloon catheters to obtain oesophageal (Poes) and transdiaphragmatic pressure (Pdi) during sniffs or phrenic nerve stimulation. Two non-invasive tests of inspiratory muscle strength have recently been described--nasal pressure during a maximal sniff (Sn Pnas) and mouth pressure during magnetic stimulation of the phrenic nerves (Tw Pmo). The use of these two tests in combination might identify patients without inspiratory muscle weakness who are unable to produce a satisfactory MIP< therefore avoiding the need for investigation with balloon catheters. METHODS: Thirty consecutive patients with clinically suspected inspiratory muscle weakness and a low MIP underwent both conventional (Sn Poes and Tw Pdi) and non-invasive testing (Sn Pnas and Tw Pmo). Weakness was considered to be excluded by a Sn Poes of > or = 80 cm H20 or a Tw Pdi of > or = 20 cm H20. The limit values used to test the hypothesis were Sn Pnas > or = 70 cm H20 or Tw Pmo > or = 12 cm H20. RESULTS: Inspiratory muscle weakness was excluded in 17 of the 30 patients. Fifteen of these would have been identified using Sn Pnas and Tw Pmo, with better results when the two tests were combined. The cut off values selected for Sn Pnas and Tw Pmo were shown by ROC plots to indicate normal strength conservatively, avoiding failure to detect mild degrees of weakness. No patient with global weakness was considered normal by Sn Pnas or Tw Pmo. CONCLUSIONS: In most patients with normal inspiratory strength and a low MIP, Tw Pmo and Sn Pnas used in combination can reliably exclude global inspiratory muscle weakness, reducing the number of patients who need testing with balloon catheters.


Thorax | 1996

Clinical assessment of diaphragm strength by cervical magnetic stimulation of the phrenic nerves.

C H Hamnegard; S Wragg; G. H. Mills; D Kyroussis; Michael I. Polkey; B. Bake; John Moxham; Malcolm Green

BACKGROUND: Accurate assessment of diaphragm strength can be difficult. Transdiaphragmatic pressure (PDI) measurements during volitional manoeuvres are useful but it may be difficult to ensure maximum patient effort. Magnetic stimulation of the phrenic nerves is easy to perform and the results are reproducible in normal subjects. The purpose of the present study was to evaluate the usefulness of magnetic stimulation of the phrenic nerves in the assessment of diaphragm weakness in patients. METHODS: Sixty-six patients referred for assessment of respiratory muscle strength and 23 normal subjects were studied. Twitch PDI (TwPDI) following magnetic stimulation of the phrenic nerves and sniffPDI were obtained in all individuals. TWPDI following bilateral electrical stimulation of the phrenic nerves was also obtained in eight patients. RESULTS: Mean (SD) TwPdi for the normal subjects was 31 (6) cm H2O and 18 (11) cm H2O for the patients. TwPDI and sniffPDI were correlated (r = 0.77). Seven of the 37 patients (19%) with a reduced sniffPDI had a TwPDI within the normal range whereas two of the 32 patients (6%) with a reduced TwPDI had a normal sniffPDI. TwPDI was similar with magnetic and electrical stimulation. CONCLUSIONS: TwPDI following magnetic stimulation of the phrenic nerves is a clinically useful measurement when assessing diaphragm weakness.


Thorax | 2000

Inspiratory pressure support prolongs exercise induced lactataemia in severe COPD

Michael I. Polkey; Peter Hawkins; D Kyroussis; Sheric G Ellum; Roy Sherwood; John Moxham

BACKGROUND A physiological benefit from pulmonary rehabilitation in chronic obstructive pulmonary disease (COPD) is more probable if exercise is performed above the lactate threshold. This study was undertaken to investigate whether it was possible to extend the lactataemia of exercise using non-invasive inspiratory pressure support (IPS). METHODS Plasma lactate levels were measured in eight men with severe COPD who performed two treadmill walks at an identical constant work rate to a condition of severe dyspnoea; the second walk was supported by IPS. RESULTS Mean plasma lactate levels before the free and IPS assisted walks were 1.65 mmol/l and 1.53 mmol/l, respectively (p = NS). Lactate levels increased during both walks to 2.96 mmol/l and 2.42 mmol/l, respectively (p = 0.01 for each) but the duration of the IPS assisted walk was significantly greater than the free walk (13.6 minutes versus 5.5 minutes, p = 0.01). CONCLUSIONS Patients with severe COPD can sustain exercise induced lactataemia for longer if assisted with IPS. This technique may prove to be a useful adjunct in pulmonary rehabilitation.


Thorax | 1994

Inspiratory muscle relaxation rate assessed from sniff nasal pressure.

D Kyroussis; G. H. Mills; C H Hamnegard; S Wragg; J Road; M Green; John Moxham

BACKGROUND--Slowing of the maximum relaxation rate (MRR) of inspiratory muscles measured from oesophageal pressure (POES) during sniffs has been used as an index of the onset and recovery of respiratory muscle fatigue. The purpose of this study was to measure MRR at the nose (PNASAL MRR), to investigate its relationship with POES MRR, and to establish whether PNASAL MRR slows with respiratory loading. METHODS--Five normal subjects were studied. Each performed sniffs before and after two minutes of maximal isocapnic ventilation (MIV). In a separate session the subjects performed submaximal sniffs. POES and PNASAL were recorded during sniffs and the MRR (% pressure fall/10 ms) for each sniff was determined. RESULTS--Before MIV mean POES MRR was 8.9 and PNASAL MRR was 9.3. The mean (SD) difference between PNASAL MRR and POES MRR during a maximal sniff was 0.48 (0.34) (n = 64) and during submaximal sniffs was 0.28 (0.46) (n = 526). The subjects showed a mean decrease in sniff POES MRR of 27.4% (range 22.5-36%) after MIV and a similar reduction in sniff PNASAL MRR of 28.5% (range 24.1-41.3%). Both returned to control values within 5-10 minutes. CONCLUSIONS--PNASAL MRR reflects POES MRR over a wide range of sniff pressures, PNASAL MRR of maximal sniffs reflects POES MRR in normal subjects at rest and following MIV, so measurement of PNASAL MRR may be a useful non-invasive method for measuring inspiratory muscle MRR, thereby providing an index of respiratory muscle fatigue.

Collaboration


Dive into the D Kyroussis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

C H Hamnegard

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar

G. H. Mills

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M Green

National Health Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl H. Hamnegard

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge