Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. L. Bleuel is active.

Publication


Featured researches published by D. L. Bleuel.


Physics of Plasmas | 2011

The experimental plan for cryogenic layered target implosions on the National Ignition Facility—The inertial confinement approach to fusion

M. J. Edwards; J. D. Lindl; B. K. Spears; S. V. Weber; L. J. Atherton; D. L. Bleuel; David K. Bradley; D. A. Callahan; Charles Cerjan; D. S. Clark; G. W. Collins; J. Fair; R. J. Fortner; S. H. Glenzer; S. W. Haan; B. A. Hammel; Alex V. Hamza; S. P. Hatchett; N. Izumi; B. Jacoby; O. S. Jones; J. A. Koch; B. J. Kozioziemski; O. L. Landen; R. A. Lerche; B. J. MacGowan; A. J. Mackinnon; E. R. Mapoles; M. M. Marinak; M. J. Moran

Ignition requires precisely controlled, high convergence implosions to assemble a dense shell of deuterium-tritium (DT) fuel with ρR>∼1 g/cm2 surrounding a 10 keV hot spot with ρR ∼ 0.3 g/cm2. A working definition of ignition has been a yield of ∼1 MJ. At this yield the α-particle energy deposited in the fuel would have been ∼200 kJ, which is already ∼10 × more than the kinetic energy of a typical implosion. The National Ignition Campaign includes low yield implosions with dudded fuel layers to study and optimize the hydrodynamic assembly of the fuel in a diagnostics rich environment. The fuel is a mixture of tritium-hydrogen-deuterium (THD) with a density equivalent to DT. The fraction of D can be adjusted to control the neutron yield. Yields of ∼1014−15 14 MeV (primary) neutrons are adequate to diagnose the hot spot as well as the dense fuel properties via down scattering of the primary neutrons. X-ray imaging diagnostics can function in this low yield environment providing additional information about ...


Physics of Plasmas | 2012

A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments

O. S. Jones; C. Cerjan; M. M. Marinak; J. L. Milovich; H. F. Robey; P. T. Springer; L. R. Benedetti; D. L. Bleuel; E. Bond; D. K. Bradley; D. A. Callahan; J. A. Caggiano; Peter M. Celliers; D. S. Clark; S. M. Dixit; T. Döppner; Rebecca Dylla-Spears; E. G. Dzentitis; D. R. Farley; S. Glenn; S. H. Glenzer; S. W. Haan; B. J. Haid; C. A. Haynam; Damien G. Hicks; B. J. Kozioziemski; K. N. LaFortune; O. L. Landen; E. R. Mapoles; A. J. Mackinnon

A detailed simulation-based model of the June 2011 National Ignition Campaign cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60. Simulated experimental values were extracted from the simulation and compared against the experiment. Although by design the model is able to reproduce the 1D in-flight implosion parameters and low-mode asymmetries, it is not able to accurately predict the measured and inferred stagnation properties and levels of mix. In particular, the measu...


Review of Scientific Instruments | 2012

Neutron spectrometry--an essential tool for diagnosing implosions at the National Ignition Facility (invited).

M. Gatu Johnson; J. A. Frenje; D. T. Casey; C. K. Li; F. H. Séguin; R. D. Petrasso; R. C. Ashabranner; R. Bionta; D. L. Bleuel; E. Bond; J. A. Caggiano; A. Carpenter; C. Cerjan; T. J. Clancy; T. Doeppner; M. J. Eckart; M. J. Edwards; S. Friedrich; S. H. Glenzer; S. W. Haan; Edward P. Hartouni; R. Hatarik; S. P. Hatchett; O. S. Jones; G. A. Kyrala; S. Le Pape; R. A. Lerche; O. L. Landen; T. Ma; A. J. Mackinnon

DT neutron yield (Y(n)), ion temperature (T(i)), and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of inertial confinement fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-time-of-flight (nTOF) spectrometers and a magnetic recoil spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the complementarity required for reliable measurements of Y(n), T(i), and dsr. From the measured dsr value, an areal density (ρR) is determined through the relationship ρR(tot) (g∕cm(2)) = (20.4 ± 0.6) × dsr(10-12 MeV). The proportionality constant is determined considering implosion geometry, neutron attenuation, and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration of the as-built spectrometers, which are now performing to the required accuracy. Recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental ignition threshold factor (ITFx), which is a function of dsr (or fuel ρR) and Y(n), has improved almost two orders of magnitude since the first shot in September, 2010.


Review of Scientific Instruments | 2012

Enhanced NIF neutron activation diagnostics.

C. B. Yeamans; D. L. Bleuel; Lee Allen Bernstein

The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.


Review of Scientific Instruments | 2012

Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

D. T. Casey; J. A. Frenje; M. Gatu Johnson; F. H. Séguin; C. K. Li; R. D. Petrasso; V. Yu. Glebov; Joseph Katz; J. P. Knauer; D. D. Meyerhofer; T. C. Sangster; R. Bionta; D. L. Bleuel; T. Döppner; S. H. Glenzer; Edward P. Hartouni; S. P. Hatchett; S. Le Pape; T. Ma; A. J. Mackinnon; M. McKernan; M. J. Moran; Eric K. Moses; H.-S. Park; J. E. Ralph; B. A. Remington; V. A. Smalyuk; C. B. Yeamans; J. L. Kline; G. A. Kyrala

A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.


Physics of Plasmas | 2014

Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility

D. T. Casey; V. A. Smalyuk; Robert Tipton; J. Pino; Gary P. Grim; B. A. Remington; Dana P. Rowley; S. V. Weber; M. A. Barrios; L. R. Benedetti; D. L. Bleuel; E. Bond; David K. Bradley; J. A. Caggiano; D. A. Callahan; Charles Cerjan; K. C. Chen; D. H. Edgell; M. J. Edwards; D. N. Fittinghoff; J. A. Frenje; M. Gatu-Johnson; Vladimir Yu. Glebov; S. Glenn; N. Guler; S. W. Haan; Alex V. Hamza; R. Hatarik; H. W. Herrmann; D. Hoover

Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T2-gas filled CH-shell implosions equipped with 4 μm thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within the CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 μm have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platf...


Plasma Physics and Controlled Fusion | 2012

Progress in the indirect-drive National Ignition Campaign

O. L. Landen; R. Benedetti; D. L. Bleuel; T. R. Boehly; David K. Bradley; J. A. Caggiano; D. A. Callahan; Peter M. Celliers; Charles Cerjan; D. S. Clark; G. W. Collins; E. L. Dewald; S. Dixit; T. Doeppner; D. H. Edgell; J Eggert; D. R. Farley; J. A. Frenje; Vladimir Yu. Glebov; S. Glenn; S. H. Glenzer; S. W. Haan; Alex V. Hamza; B. A. Hammel; C. A. Haynam; Joseph Hammer; R. F. Heeter; H. W. Herrmann; D. G. Hicks; D. E. Hinkel

We have carried out precision optimization of inertial confinement fusion ignition scale implosions. We have achieved hohlraum temperatures in excess of the 300 eV ignition goal with hot-spot symmetry and shock timing near ignition specs. Using slower rise pulses to peak power and extended pulses resulted in lower hot-spot adiabat and higher main fuel areal density at about 80% of the ignition goal. Yields are within a factor of 5–6 of that required to initiate alpha dominated burn. It is likely we will require thicker shells (+15–20%) to reach ignition velocity without mixing of ablator material into the hot spot.


Plasma Physics and Controlled Fusion | 2013

Progress toward ignition at the National Ignition Facility

D. E. Hinkel; M. J. Edwards; Peter A. Amendt; R. Benedetti; L. Berzak Hopkins; D. L. Bleuel; T. R. Boehly; David K. Bradley; J. A. Caggiano; D. A. Callahan; Peter M. Celliers; Charles Cerjan; D. S. Clark; G. W. Collins; E. L. Dewald; T. R. Dittrich; L. Divol; S. Dixit; T. Doeppner; D. H. Edgell; J Eggert; D. R. Farley; J. A. Frenje; Vladimir Yu. Glebov; S. Glenn; S. W. Haan; Alex V. Hamza; B. A. Hammel; C. A. Haynam; Joseph Hammer

Progress toward ignition at the National Ignition Facility (NIF) has been focused on furthering the understanding of implosion performance. Implosion performance depends on the capsule fuel shape, on higher mode asymmetries that may cause hydrodynamic instabilities to quench ignition, on time-dependent asymmetries introduced by the hohlraum target, and on ablator performance. Significant findings in each of these four areas is reported. These investigations have led to improved in-flight capsule shape, a demonstration that a capsule robust to mix can generate high levels of neutrons (7.7 × 10 14 ), hohlraum modifications that should ultimately provide improved beam propagation and better laser coupling, and fielding of capsules with high-density carbon (HDC) ablators. A capsule just fielded with a HDC ablator and filled with DT gas generated a preliminary record level of neutrons at 1.6 × 10 15 , or 5kJ of energy. Future plans include further improvements to fuel shape and hohlraum performance, fielding robust capsules at higher laser power and energy, and tuning the HDC capsule. A capsule with a nanocrystalline diamond (HDC) ablator on a DT ice layer will be fielded at NIF later this year.


Physical Review Letters | 2016

Experimental Neutron Capture Rate Constraint Far from Stability

S. N. Liddick; A. Spyrou; B. P. Crider; F. Naqvi; Ann-Cecilie Larsen; M. Guttormsen; Matthew Mumpower; Rebecca Surman; G. Perdikakis; D. L. Bleuel; A. Couture; L. Crespo Campo; A.C. Dombos; R. Lewis; S. Mosby; Stylianos Nikas; C. J. Prokop; T. Renstrøm; B. Rubio; S. Siem; S. J. Quinn

Nuclear reactions where an exotic nucleus captures a neutron are critical for a wide variety of applications, from energy production and national security, to astrophysical processes, and nucleosynthesis. Neutron capture rates are well constrained near stable isotopes where experimental data are available; however, moving far from the valley of stability, uncertainties grow by orders of magnitude. This is due to the complete lack of experimental constraints, as the direct measurement of a neutron-capture reaction on a short-lived nucleus is extremely challenging. Here, we report on the first experimental extraction of a neutron capture reaction rate on ^{69}Ni, a nucleus that is five neutrons away from the last stable isotope of Ni. The implications of this measurement on nucleosynthesis around mass 70 are discussed, and the impact of similar future measurements on the understanding of the origin of the heavy elements in the cosmos is presented.


Fusion Science and Technology | 2016

The National Ignition Facility Diagnostic Set at the Completion of the National Ignition Campaign, September 2012

J. D. Kilkenny; P. M. Bell; David K. Bradley; D. L. Bleuel; J. A. Caggiano; E. L. Dewald; W. W. Hsing; D. H. Kalantar; R. L. Kauffman; D. J. Larson; D. L. Moody; D. Schneider; M. B. Schneider; D. Shaughnessy; R. T. Shelton; W. Stoeffl; K. Widmann; C. B. Yeamans; S. H. Batha; Gary P. Grim; H. W. Herrmann; F. E. Merrill; R. J. Leeper; John A. Oertel; T. C. Sangster; D. H. Edgell; M. Hohenberger; V. Yu. Glebov; S. P. Regan; J. A. Frenje

Abstract At the completion of the National Ignition Campaign (NIC), the National Ignition Facility (NIF) had about 36 different types of diagnostics. These were based on several decades of development on Nova and OMEGA and involved the whole U.S. inertial confinement fusion community. In 1994, the Joint Central Diagnostic Team documented a plan for a limited set of NIF diagnostics in the NIF Conceptual Design Report. Two decades later, these diagnostics, and many others, were installed workhorse tools for all users of NIF. We give a short description of each of the 36 different types of NIC diagnostics grouped by the function of the diagnostics, namely, target drive, target response and target assembly, stagnation, and burn. A comparison of NIF diagnostics with the Nova diagnostics shows that the NIF diagnostic capability is broadly equivalent to that of Nova in 1999. Although NIF diagnostics have a much greater degree of automation and rigor than Nova’s, new diagnostics are limited such as the higher-speed X-ray imager. Recommendations for future diagnostics on the NIF are discussed.

Collaboration


Dive into the D. L. Bleuel's collaboration.

Top Co-Authors

Avatar

M. Wiedeking

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

L. Phair

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

L. A. Bernstein

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J.T. Burke

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. Fallon

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. Hatarik

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. M. Clark

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. M. Allmond

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

B. L. Goldblum

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge