Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Leanne Jones is active.

Publication


Featured researches published by D. Leanne Jones.


Nature Reviews Molecular Cell Biology | 2008

No place like home: anatomy and function of the stem cell niche

D. Leanne Jones; Amy J. Wagers

Stem cells are rare cells that are uniquely capable of both reproducing themselves (self-renewing) and generating the differentiated cell types that are needed to carry out specialized functions in the body. Stem cell behaviour, in particular the balance between self-renewal and differentiation, is ultimately controlled by the integration of intrinsic factors with extrinsic cues supplied by the surrounding microenvironment, known as the stem cell niche. The identification and characterization of niches within tissues has revealed an intriguing conservation of many components, although the mechanisms that regulate how niches are established, maintained and modified to support specific tissue stem cell functions are just beginning to be uncovered.


Cell Stem Cell | 2010

Stem Cells and the Niche: A Dynamic Duo

Justin C. Voog; D. Leanne Jones

Stem cell niches are dynamic microenvironments that balance stem cell activity to maintain tissue homeostasis and repair throughout the lifetime of an organism. The development of strategies to monitor and perturb niche components has provided insight into the responsive nature of the niche and offers a framework to uncover how disruption of normal stem cell niche function may contribute to aging and disease onset and progression. Additional work in the identification of genetic factors that regulate the formation, activity, and size of stem cell niches will facilitate incorporation of the niche into stem cell-based therapies and regenerative medicine.


Cell Stem Cell | 2007

Decline in Self-Renewal Factors Contributes to Aging of the Stem Cell Niche in the Drosophila Testis

Monica Boyle; Chihunt Wong; Michael Rocha; D. Leanne Jones

Aging is characterized by compromised organ and tissue function. A decrease in stem cell number and/or activity could lead to the aging-related decline in tissue homeostasis. We have analyzed how the process of aging affects germ line stem cell (GSC) behavior in the Drosophila testis and report that significant changes within the stem cell microenvironment, or niche, occur that contribute to a decline in stem cell number over time. Specifically, somatic niche cells in testes from older males display reduced expression of the cell adhesion molecule DE-cadherin and a key self-renewal signal unpaired (upd). Loss of upd correlates with an overall decrease in stem cells residing within the niche. Conversely, forced expression of upd within niche cells maintains GSCs in older males. Therefore, our data indicate that age-related changes within stem cell niches may be a significant contributing factor to reduced tissue homeostasis and regeneration in older individuals.


Cell Metabolism | 2011

Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog

Michael Rera; Jaehyoung Cho; Christopher L. Koehler; Matthew Ulgherait; Jae H. Hur; William S. Ansari; Thomas Lo; D. Leanne Jones; David W. Walker

In mammals, the PGC-1 transcriptional coactivators are key regulators of energy metabolism, including mitochondrial biogenesis and respiration, which have been implicated in numerous pathogenic conditions, including neurodegeneration and cardiomyopathy. Here, we show that overexpression of the Drosophila PGC-1 homolog (dPGC-1/spargel) is sufficient to increase mitochondrial activity. Moreover, tissue-specific overexpression of dPGC-1 in stem and progenitor cells within the digestive tract extends life span. Long-lived flies overexpressing dPGC-1 display a delay in the onset of aging-related changes in the intestine, leading to improved tissue homeostasis in old flies. Together, these results demonstrate that dPGC-1 can slow aging both at the level of cellular changes in an individual tissue and also at the organismal level by extending life span. Our findings point to the possibility that alterations in PGC-1 activity in high-turnover tissues, such as the intestine, may be an important determinant of longevity in mammals.


Journal of Cell Science | 2005

Signaling in stem cell niches: lessons from the Drosophila germline

Yukiko M. Yamashita; Margaret T. Fuller; D. Leanne Jones

Stem cells are cells that, upon division, can produce new stem cells as well as daughter cells that initiate differentiation along a specific lineage. Studies using the Drosophila germline as a model system have demonstrated that signaling from the stem cell niche plays a crucial role in controlling stem cell behavior. Surrounding support cells secrete growth factors that activate signaling within adjacent stem cells to specify stem cell self-renewal and block differentiation. In addition, cell-cell adhesion between stem cells and surrounding support cells is important for holding stem cells close to self-renewal signals. Furthermore, a combination of localized signaling and autonomously acting proteins might polarize stem cells in such a way as to ensure asymmetric stem cell divisions. Recent results describing stem cell niches in other adult stem cells, including hematopoietic and neural stem cells, have demonstrated that the features characteristic of stem cell niches in Drosophila gonads might be conserved.


Nature Cell Biology | 2011

Emerging models and paradigms for stem cell ageing

D. Leanne Jones; Thomas A. Rando

Ageing is accompanied by a progressive decline in stem cell function, resulting in less effective tissue homeostasis and repair. Here we discuss emerging invertebrate models that provide insights into molecular pathways of age-related stem cell dysfunction in mammals, and we present various paradigms of how stem cell functionality changes with age, including impaired self-renewal and aberrant differentiation potential.


Nature | 2008

Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis

Justin Voog; Cecilia D’Alterio; D. Leanne Jones

Adult stem cells reside in specialized microenvironments, or niches, that have an important role in regulating stem cell behaviour. Therefore, tight control of niche number, size and function is necessary to ensure the proper balance between stem cells and progenitor cells available for tissue homeostasis and wound repair. The stem cell niche in the Drosophila male gonad is located at the tip of the testis where germline and somatic stem cells surround the apical hub, a cluster of approximately 10–15 somatic cells that is required for stem cell self-renewal and maintenance. Here we show that somatic stem cells in the Drosophila testis contribute to both the apical hub and the somatic cyst cell lineage. The Drosophila orthologue of epithelial cadherin (DE-cadherin) is required for somatic stem cell maintenance and, consequently, the apical hub. Furthermore, our data indicate that the transcriptional repressor escargot regulates the ability of somatic cells to assume and/or maintain hub cell identity. These data highlight the dynamic relationship between stem cells and the niche and provide insight into genetic programmes that regulate niche size and function to support normal tissue homeostasis and organ regeneration throughout life.


Nature | 2012

The let-7 –Imp axis regulates ageing of the Drosophila testis stem-cell niche

Hila Toledano; Cecilia D’Alterio; Benjamin Czech; Erel Levine; D. Leanne Jones

Adult stem cells support tissue homeostasis and repair throughout the life of an individual. During ageing, numerous intrinsic and extrinsic changes occur that result in altered stem-cell behaviour and reduced tissue maintenance and regeneration. In the Drosophila testis, ageing results in a marked decrease in the self-renewal factor Unpaired (Upd), leading to a concomitant loss of germline stem cells. Here we demonstrate that IGF-II messenger RNA binding protein (Imp) counteracts endogenous small interfering RNAs to stabilize upd (also known as os) RNA. However, similar to upd, Imp expression decreases in the hub cells of older males, which is due to the targeting of Imp by the heterochronic microRNA let-7. In the absence of Imp, upd mRNA therefore becomes unprotected and susceptible to degradation. Understanding the mechanistic basis for ageing-related changes in stem-cell behaviour will lead to the development of strategies to treat age-onset diseases and facilitate stem-cell-based therapies in older individuals.


Current Biology | 2010

Stem cell dynamics in response to nutrient availability.

Catherine J. McLeod; Lei Wang; Chihunt Wong; D. Leanne Jones

When nutrient availability becomes limited, animals must actively adjust their metabolism to allocate limited resources and maintain tissue homeostasis. However, it is poorly understood how tissues maintained by adult stem cells respond to chronic changes in metabolism. To begin to address this question, we fed flies a diet lacking protein (protein starvation) and assayed both germline and intestinal stem cells. Our results revealed a decrease in stem cell proliferation and a reduction in stem cell number; however, a small pool of active stem cells remained. Upon refeeding, stem cell number increased dramatically, indicating that the remaining stem cells are competent to respond quickly to changes in nutritional status. Stem cell maintenance is critically dependent upon intrinsic and extrinsic factors that act to regulate stem cell behavior. Activation of the insulin/IGF signaling pathway in stem cells and adjacent support cells in the germline was sufficient to suppress stem cell loss during starvation. Therefore, our data indicate that stem cells can directly sense changes in the systemic environment to coordinate their behavior with the nutritional status of the animal, providing a paradigm for maintaining tissue homeostasis under metabolic stress.


The EMBO Journal | 2014

Escargot maintains stemness and suppresses differentiation in Drosophila intestinal stem cells

Jerome Korzelius; Svenja K. Naumann; Mariano Loza-Coll; Jessica Sk Chan; Devanjali Dutta; Jessica Oberheim; Christine Gläßer; Tony D. Southall; Andrea H. Brand; D. Leanne Jones; Bruce A. Edgar

Snail family transcription factors are expressed in various stem cell types, but their function in maintaining stem cell identity is unclear. In the adult Drosophila midgut, the Snail homolog Esg is expressed in intestinal stem cells (ISCs) and their transient undifferentiated daughters, termed enteroblasts (EB). We demonstrate here that loss of esg in these progenitor cells causes their rapid differentiation into enterocytes (EC) or entero‐endocrine cells (EE). Conversely, forced expression of Esg in intestinal progenitor cells blocks differentiation, locking ISCs in a stem cell state. Cell type‐specific transcriptome analysis combined with Dam‐ID binding studies identified Esg as a major repressor of differentiation genes in stem and progenitor cells. One critical target of Esg was found to be the POU‐domain transcription factor, Pdm1, which is normally expressed specifically in differentiated ECs. Ectopic expression of Pdm1 in progenitor cells was sufficient to drive their differentiation into ECs. Hence, Esg is a critical stem cell determinant that maintains stemness by repressing differentiation‐promoting factors, such as Pdm1.

Collaboration


Dive into the D. Leanne Jones's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cecilia D’Alterio

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Christopher L. Koehler

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Wang

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Luís Pedro F. Resende

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge