Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Liang is active.

Publication


Featured researches published by D. Liang.


Journal of the American Chemical Society | 2010

A Chelator-Free Multifunctional [64Cu]CuS Nanoparticle Platform for Simultaneous Micro-PET/CT Imaging and Photothermal Ablation Therapy

Min Zhou; Rui Zhang; Miao Huang; Wei Lu; Shaoli Song; Marites P. Melancon; Mei Tian; D. Liang; Chun Li

We synthesized and evaluated a novel class of chelator-free [(64)Cu]CuS nanoparticles (NPs) suitable both for PET imaging and as photothermal coupling agents for photothermal ablation. These [(64)Cu]CuS NPs are simple to make, possess excellent stability, and allow robust noninvasive micro-PET imaging. Furthermore, the CuS NPs display strong absorption in the near-infrared (NIR) region (peak at 930 nm); passive targeting prefers the tumor site, and mediated ablation of U87 tumor cells occurs upon exposure to NIR light both in vitro and in vivo after either intratumoral or intravenous injection. The combination of small diameter (∼11 nm), strong NIR absorption, and integration of (64)Cu as a structural component makes these [(64)Cu]CuS NPs ideally suited for multifunctional molecular imaging and therapy.


Biomaterials | 2009

Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice

Guodong Zhang; Zhi Yang; Wei Lu; Rui Zhang; Qian Huang; Mei Tian; L i Li; D. Liang; Chun Li

Polyethylene glycol (PEG)-coated (pegylated) gold nanoparticles (AuNPs) have been proposed as drug carriers and diagnostic contrast agents. However, the impact of particle characteristics on the biodistribution and pharmacokinetics of pegylated AuNPs is not clear. We investigated the effects of PEG molecular weight, type of anchoring ligand, and particle size on the assembly properties and colloidal stability of PEG-coated AuNPs. The pharmacokinetics and biodistribution of the most stable PEG-coated AuNPs in nude mice bearing subcutaneous A431 squamous tumors were further studied using (111)In-labeled AuNPs. AuNPs coated with thioctic acid (TA)-anchored PEG exhibited higher colloidal stability in phosphate-buffered saline in the presence of dithiothreitol than did AuNPs coated with monothiol-anchored PEG. AuNPs coated with high-molecular-weight (5000 Da) PEG were more stable than AuNPs coated with low-molecular-weight (2000 Da) PEG. Of the 20-nm, 40-nm, and 80-nm AuNPs coated with TA-terminated PEG(5000), the 20-nm AuNPs exhibited the lowest uptake by reticuloendothelial cells and the slowest clearance from the body. Moreover, the 20-nm AuNPs coated with TA-terminated PEG(5000) showed significantly higher tumor uptake and extravasation from the tumor blood vessels than did the 40- and 80-nm AuNPs. Thus, 20-nm AuNPs coated with TA-terminated PEG(5000) are promising potential drug delivery vehicles and diagnostic imaging agents.


Journal of Controlled Release | 2012

Photothermal-Chemotherapy with Doxorubicin-Loaded Hollow Gold Nanospheres: A Platform for Near-Infrared Light-Trigged Drug Release

Jian You; Rui Zhang; Guodong Zhang; Meng Zhong; Yang Liu; Carolyn S. Van Pelt; D. Liang; Wei Wei; Anil K. Sood; Chun Li

Photothermal ablation (PTA) is an emerging technique that uses near-infrared (NIR) laser light-generated heat to destroy tumor cells. However, complete eradication of tumor cells with PTA is difficult because of uneven heat distribution in the treatment volume. We hypothesized that combining PTA with chemotherapy using a single multifunctional nanoconstruct that mediates simultaneous photothermal cell killing and drug release (photothermal-chemotherapy) would result in enhanced antitumor activity and reduced toxicity compared to chemotherapy alone. Doxorubicin (DOX) was loaded to hollow gold nanospheres (HAuNS) coated with polyethylene glycol (PEG). The pharmacokinetics and biodistribution of both DOX and HAuNS in the resulting nanoconstruct, DOX@PEG-HAuNS having different DOX:PEG:HAuNS ratios, were evaluated using dual isotope labeling techniques. The antitumor activity of DOX@PEG-HAuNS with DOX:PEG:HAuNS weight ratio of 1:3:1 (NP3) in combination with NIR laser was studied in vitro and in vivo using human MDA-MB-231 breast cancer and A2780 ovarian cancer cells. In vitro, NP3 mediated PTA of both cancer cells and DOX release upon NIR laser treatment. In vivo, NP3 showed slower clearance in blood and greater accumulation in tumors than free DOX. NP3-plus-NIR laser demonstrated greater antitumor activity than free DOX, NP3, or liposomal DOX. Moreover, NP3 displayed significantly decreased systemic toxicity compared to free DOX or liposomal DOX. Enhanced antitumor effect with NP3-plus-laser can be attributed to both the cytotoxic effect of DOX released from NP3 and the photothermal effect mediated by HAuNS. Slow release of DOX from NP3 in normal tissues contributed to reduced systemic toxicity. Photothermal-chemotherapy exemplified by a single-agent nanoconstruct NP3 is a promising approach to anticancer therapy.


ACS Nano | 2015

CuS Nanodots with Ultrahigh Efficient Renal Clearance for Positron Emission Tomography Imaging and Image-Guided Photothermal Therapy

Min Zhou; Junjie Li; Su Liang; Anil K. Sood; D. Liang; Chun Li

Translation of nanoparticles (NPs) into clinical practice has been limited by toxic effects induced by nonspecific accumulation of NPs in healthy organs after systemic administration. The ideal NPs should accumulate in the target site, carry out their function, and then ultimately be eliminated from the body. Here, we show a single-compartment, multifunctional ultrasmall copper sulfide nanodot (CuS ND) that is rapidly cleared from the body. These CuS NDs have a hydrodynamic diameter of <6 nm, can efficiently absorb near-infrared light for photothermal ablation therapy, and stably incorporate the copper-64 radioisotope for noninvasive positron emission tomography (PET). Importantly, ∼95% of CuS NDs are excreted intact through the renal-urinary system within 24 h with minimal retention in the liver and the spleen. The ultrasmall CuS NDs accumulate in 4T1 tumors in Balb/c mice, as monitored by PET imaging, and mediate tumor ablation when combined with near-infrared light irradiation. As a first example of PET-visible, renal-clearable inorganic nanomaterials with peak absorption in the near-infrared region, CuS NDs represent a robust platform for cancer imaging and therapy.


Cancer Research | 2010

Genetic Variants in MicroRNA Biosynthesis Pathways and Binding Sites Modify Ovarian Cancer Risk, Survival, and Treatment Response

D. Liang; Larissa A. Meyer; David Chang; Jie Lin; Xia Pu; Yuanqing Ye; Jian Gu; Xifeng Wu; Karen H. Lu

MicroRNAs (miRNA) play important roles in tumorigenesis. Genetic variations in miRNA processing genes and miRNA binding sites may affect the biogenesis of miRNA and the regulatory effect of miRNAs to their target genes, hence promoting tumorigenesis. This study analyzed 226 single nucleotide polymorphisms (SNP) in miRNA processing genes and miRNA binding sites in 339 ovarian cancer cases and 349 healthy controls to assess association with cancer risk, overall survival, and treatment response. Thirteen polymorphisms were found to have significant association with risk. The most significant were 2 linked SNPs (r(2) = 0.99), rs2740351 and rs7813 in GEMIN4 [odds ratio (OR) = 0.71; 95% confidence interval (CI), 0.57-0.87 and OR = 0.71; 95% CI, 0.57-0.88, respectively]. Unfavorable genotype analysis showed the cumulative effect of these 13 SNPs on risk (P for trend < 0.0001). Potential higher order gene-gene interactions were identified, which categorized patients into different risk groups according to their genotypic signatures. In the clinical outcome study, 24 SNPs exhibited significant association with overall survival and 17 SNPs with treatment response. Notably, patients carrying a rare homozygous genotype of rs1425486 in PDGFC had poorer overall survival [hazard ratio (HR) = 2.69; 95% CI, 1.67-4.33] and worse treatment response (OR = 3.38; 95% CI, 1.39-8.19), compared to carriers of common homozygous and heterozygous genotypes. Unfavorable genotype analyses also showed a strong gene-dosage effect with decreased survival and increased risk of treatment nonresponse in patients with greater number of unfavorable genotypes (P for trend < 0.0001). Taken together, miRNA-related genetic polymorphisms may impact ovarian cancer predisposition and clinical outcome both individually and jointly.


Nanotechnology | 2009

Pharmacokinetics and biodistribution of near-infrared fluorescence polymeric nanoparticles

Zhi Yang; Jeffrey Wade Leon; Mike Martin; John William Harder; Rui Zhang; D. Liang; Wei Lu; Mei Tian; Juri G. Gelovani; Alex Qiao; Chun Li

There has been increased interest in the use of polymeric nanoparticles as carriers for near-infrared fluorescence (NIRF) dyes for cancer diagnosis. However, efficient delivery of nanoparticles to the tumors after systemic administration is limited by various biobarriers. In this study, we investigated the pharmacokinetics, biodistribution, and tumor uptake of sub-nanometer sized polymeric nanoparticles (<100 nm in diameter) coated with polyethylene glycol in tumor-bearing mice. To facilitate our studies, these particles were labeled with gamma emitter indium-111. We found that two NIRF nanoparticles having the same size (approximately 20 nm) and chemical composition but different structures (i.e., hydrogel versus core-shell nanolatex), or the same core-shell nanolatex particles with different sizes (20, 30, and 60 nm), had different blood circulation times, biodistribution, and tumor uptake. Interestingly, the tumor uptake of the nanolatex particles correlated well with their blood residence times (R(2) = 0.95), but similar correlations were not found between nanogel and nanolatex particles (R(2) = 0.05). These results suggest that both the blood circulation time and the extent of hydration of the nanoparticles play an important role in the tumor uptake of nanoparticles. Prolonged blood circulation of these NIRF nanoparticles allowed clear visualization of tumors with gamma-scintigraphy and optical imaging after intravenous administration. A better understanding with regard to how the characteristics of nanoparticles influence their in vivo behavior is an important step towards designing NIRF nanoparticles suitable for molecular imaging applications and for efficient tumor delivery.


ACS Nano | 2014

Selective uptake and imaging of aptamer- and antibody-conjugated hollow nanospheres targeted to epidermal growth factor receptors overexpressed in head and neck cancer.

Marites P. Melancon; Min Zhou; Rui Zhang; Chiyi Xiong; Peter B. Allen; Xiaoxia Wen; Qian Huang; Michael J. Wallace; Jeffrey N. Myers; R. Jason Stafford; D. Liang; Andrew D. Ellington; Chun Li

The purpose of this study was to compare the binding affinity and selective targeting of aptamer- and antibody-coated hollow gold nanospheres (HAuNS) targeted to epidermal growth factor receptors (EGFR). EGFR-targeting aptamers were conjugated to HAuNS (apt-HAuNS) by attaching a thiol-terminated single-stranded DNA to the HAuNS and then adding the complementary RNA targeted to EGFR. Apt-HAuNS was characterized in terms of size, surface charge, absorption, and number of aptamers per particle. The in vivo pharmacokinetics, in vivo biodistribution, and micro-SPECT/CT imaging of 111In-labeled apt-HAuNS and anti-EGFR antibody (C225)-conjugated HAuNS were evaluated in nude mice bearing highly malignant human OSC-19 oral tumors. 111In-labeled PEG-HAuNS was used as a control (n = 5/group). Apt-HAuNS did not have an altered absorbance profile or size (λmax = 800 nm; diameter = 55 nm) compared to C225-HAuNS or PEG-HAuNS. The surface charge became more negative upon conjugation of the aptamer (−51.4 vs −19.0 for PEG-HAuNS and −25.0 for C225-HAuNS). The number of aptamers/particle was ∼250. In vitro cell binding and in vivo biodistribution showed selective binding of the apt-HAuNS to EGFR. μSPECT/CT imaging confirmed that there was more tumor uptake of apt-HAuNS than C225-HAuNS. Aptamer is a promising ligand for image-guided delivery of nanoparticles for treatment of tumor cells overexpressing EGFR.


Biomaterials | 2011

Peptide-conjugated polymeric micellar nanoparticles for Dual SPECT and optical imaging of EphB4 receptors in prostate cancer xenografts

Rui Zhang; Chiyi Xiong; Miao Huang; Min Zhou; Qian Huang; Xiaoxia Wen; D. Liang; Chun Li

EphB4, a member of the largest family of receptor tyrosine kinases, is overexpressed in numerous tumors. In this study, we developed a new class of multimodal nanoplatform for dual single photon emission computed tomography (SPECT) and near-infrared fluorescence imaging of EphB4. EphB4-binding peptide TNYL-FSPNGPIARAW (TNYL-RAW) was conjugated to polyethylene glycol-coated, core-crosslinked polymeric micelles (CCPM) dually labeled with near-infrared fluorescence fluorophores (Cy7) and a radioisotope (indium 111). In vitro, TNYL-RAW-CCPM selectively bound to EphB4-positive PC-3M prostate cancer cells, but not to EphB4-negative A549 lung cancer cells. In vivo, PC-3M tumors were clearly visualized by both SPECT and near-infrared fluorescence tomography after intravenous administration of (111)In-labeled TNYL-RAW-CCPM. In contrast, there was little signal in A549 tumors of mice injected with (111)In-labeled TNYL-RAW-CCPM or in PC-3M tumors of mice injected with (111)In-labeled CCPM. The high accumulation of (111)In-labeled TNYL-RAW-CCPM in PC-3M tumor could be significantly reduced after co-injection with an excess amount of TNYL-RAW peptide. Immunohistochemical analysis showed that fluorescence signal from the nanoparticles correlated with their radioactivity count, and co-localized with the EphB4 expressing region. (111)In-labeled TNYL-RAW-CCPM allowed visualization of cancer cells overexpressing EphB4 by both nuclear and optical techniques. The complementary information acquired with multiple imaging techniques should be advantageous in early detection of cancer.


The Journal of Nuclear Medicine | 2011

Annexin A5–Conjugated Polymeric Micelles for Dual SPECT and Optical Detection of Apoptosis

Rui Zhang; Wei Lu; Xiaoxia Wen; Miao Huang; Min Zhou; D. Liang; Chun Li

Imaging of apoptosis can allow noninvasive assessment of disease states and response to therapeutic intervention for a variety of diseases. The purpose of this study was to develop and evaluate a multimodal nanoplatform for the detection of apoptosis. Methods: To modulate the pharmacokinetics of annexin A5, a 36-kDa protein that binds specifically with phosphatidylserine, annexin A5 was conjugated to polyethylene glycol–coated, core-cross-linked polymeric micelles (CCPMs) dually labeled with near-infrared fluorescence fluorophores and a radioisotope (111In). To evaluate the specificity of the binding of annexin A5-CCPM to apoptotic cells, both fluorescence microscopy and cell-binding studies were performed in vitro. Pharmacokinetics, biodistribution, dual nuclear and optical imaging, and immunohistochemical studies were performed in 2 xenografted tumor models to evaluate the potential applications of annexin A5-CCPM. Results: In cell-based studies, annexin A5-CCPM exhibited strongly specific binding to apoptotic tumor cells. This binding could be efficiently blocked by annexin A5. In mice, annexin A5-CCPM displayed a mean elimination half-life of 12.5 h. The mean initial concentration in blood was 22.4% of the injected dose/mL, and annexin A5-CCPM was mainly distributed in the central blood compartment. In mice bearing EL4 lymphoma treated with cyclophosphamide and etoposide and in mice bearing MDA-MB-468 breast tumors treated with poly(L-glutamic acid)-paclitaxel and cetuximab (IMC-C225) anti–epidermal growth factor receptor antibody, the tumor apoptosis was clearly visualized by both SPECT and fluorescence molecular tomography. In contrast, there was little accumulation of this nanoradiotracer in the tumors of untreated mice. The biodistribution data were consistent with the imaging data, with tumor-to-muscle and tumor-to-blood ratios of 38.8 and 4.1, respectively, in treated mice, and 14.8 and 2.2, respectively, in untreated mice bearing EL4 lymphoma. Moreover, further studies demonstrated that the conventional 99mTc-labeled hydrazinonicotinamide annexin A5 and the plain CCPM control exhibited significantly lower uptake in the tumors of the treated mice than annexin A5-CCPM. Immunohistochemistry staining study showed that radioactivity count correlated with fluorescence signal from the nanoparticles, and both signals colocalized with the region of tumor apoptosis. Conclusion: Annexin A5-CCPM allowed visualization of tumor apoptosis by both nuclear and optical techniques. The complementary information acquired with multiple imaging techniques should be advantageous in assessing and validating early response to therapy.


Cancer | 2003

XRCC3 genetic polymorphism, smoking, and lung carcinoma risk in minority populations

M.P.H. Yunfei Wang M.D.; D. Liang; Margaret R. Spitz; Kerang Zhang; Qiong Dong; Christopher I. Amos; Xifeng Wu

The XRCC3 protein participates in DNA double‐strand breaks and recombinational repair. A single C‐to‐T nucleotide change at codon 241 (Thr241Met) has been identified in the XRCC3 gene. Using a hospital‐based case–control approach, the authors studied the XRCC3 polymorphism as a possible genetic risk factor for lung carcinoma in African Americans and Mexican Americans.

Collaboration


Dive into the D. Liang's collaboration.

Top Co-Authors

Avatar

Xifeng Wu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chun Li

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yuanqing Ye

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Karen H. Lu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jing Ma

Texas Southern University

View shared research outputs
Top Co-Authors

Avatar

Rui Zhang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jie Lin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michelle A.T. Hildebrandt

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jian Gu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xia Pu

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge