Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Linkert is active.

Publication


Featured researches published by D. Linkert.


Space Science Reviews | 1992

The Galileo Dust Detector

E. Grün; H. Fechtig; Martha S. Hanner; J. Kissel; Bertil-Anders Lindblad; D. Linkert; Dieter Maas; Gregor E. Morfill; H. A. Zook

The Galileo Dust Detector is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the Jovian system, to investigate their physical and dynamical properties as functions of the distances to the Sun, to Jupiter and to its satellites, to study its interaction with the Galilean satellites and the Jovian magnetosphere. Surface phenomena of the satellites (like albedo variations), which might be effects of meteoroid impacts will be compared with the dust environment. Electric charges of particulate matter in the magnetosphere and its consequences will be studied; e.g., the effects of the magnetic field on the trajectories of dust particles and fragmentation of particles due to electrostatic disruption. The investigation is performed with an instrument that measures the mass, speed, flight direction and electric charge of individual dust particles. It is a multicoincidence detector with a mass sensitivity 106 times higher than that of previous in-situ experiments which measured dust in the outer solar system. The instrument weighs 4.2 kg, consumes 2.4 W, and has a normal data transmission rate of 24 bits s−1 in nominal spacecraft tracking mode. On December 29, 1989 the instrument was switched-on. After the instrument had been configured to flight conditions cruise science data collection started immediately. In the period to May 18, 1990 at least 168 dust impacts have been recorded. For 81 of these dust grains masses and impact speeds have been determined. First flux values are given.


Planetary and Space Science | 1995

Reduction of Galileo and Ulysses dust data

E. Grün; M. Baguhl; Douglas P. Hamilton; J. Kissel; D. Linkert; G. Linkert; R. Riemann

Abstract The reduction procedures which are applied to raw data from the Galileo and Ulysses Dust Detectors are described in order to obtain physical parameters (mass and velocity) for the recorded dust impacts. Both detectors are impact ionization detectors which measure the charge released from an impact onto a solid target. From the rise times of the signals, impact speeds from 2 to 70 km s−1 can be derived with an accuracy of about a factor 2. Electronic impact charges are measured from 10−14 to 10−8 C, which refer to a speed dependent mass range (e.g. 4 × 10−15−4 × 10−9 g at 20 km s−1 impact speed). Larger particles are recorded with saturated signals. Data processing performed both on board the spacecraft and on the ground is described. The processing allows dust impacts to be identified and separated from noise events. Supplementary information, such as impact time and sensor pointing at the time of impact, is also provided.


Journal of Geophysical Research | 1998

Galileo observes electromagnetically coupled dust in the Jovian magnetosphere

Eberhard Grun; Harald Krüger; Amara Lynn Graps; Douglas P. Hamilton; A. Heck; G. Linkert; H. A. Zook; Stanley F. Dermott; H. Fechtig; B. A. Gustafson; Martha S. Hanner; Mihaly Horanyi; J. Kissel; Bertil Anders Lindblad; D. Linkert; I. Mann; J. A. M. McDonnell; G. E. Morfill; C. Polanskey; G. Schwehm; Ralf Srama

Measurements of dust coupled to the Jovian magnetosphere have been obtained with the dust detector on board the Galileo spacecraft. We report on data obtained during the first four orbits about Jupiter that had flybys of the Galilean satellites: Ganymede (orbits 1 and 2), Callisto (orbit 3), and Europa (orbit 4). The most prominent features observed are highly time variable dust streams recorded throughout the Jovian system. The impact rate varied by up to 2 orders of magnitude with a 5 and 10 hour periodicity, which shows a correlation with Galileos position relative to the Jovian magnetic field. Around 20 RJ (Jupiter radius, RJ=71, 492 km) in bound a dip in the impact rate has been found consistently. At the same times, reversals by 180° in impact direction occurred. This behavior can be qualitatively explained by strong coupling of nanometer-sized dust to the Jovian magnetic field. At times of satellite flybys, enhanced rates of dust impacts have been observed, which suggests that all Galilean satellites are sources of ejecta particles. Inside about 20 RJ impacts of micrometer-sized particles have been recorded that could be particles on bound orbits about Jupiter. (Less)


Planetary and Space Science | 1995

Three years of Galileo dust data

E. Grün; M. Baguhl; N. Divine; H. Fechtig; Douglas P. Hamilton; Martha S. Hanner; J. Kissel; Bertil Anders Lindblad; D. Linkert; G. Linkert; I. Mann; J. A. M. McDonnell; Gregor E. Morfill; C. Polanskey; R. Riemann; G. Schwehm; N. Siddique; P. Staubach; H. A. Zook

Abstract From its launch in October 1989 until the end of 1992, the Galileo spacecraft traversed interplanetary space from Venus to the asteroid belt and successfully executed close flybys of Venus, the Earth, and the asteroid Gaspra. The dust instrument has been operating most of the time since it was switched on in December 1989. Except for short time intervals near Earth, data from the instrument were received via occasional (once per week to once per month) memory read outs containing 282–818 bytes of data. All events (impacts or noise events) were classified by an onboard program into 24 categories. Over the three-year time span, the dust detector recorded 469 “big” dust impacts. These were counted in 21 of the 24 event categories. The three remaining categories of very low amplitude events contain mostly noise events. The impact rate varied from 0.2 to 2 impacts per day depending on heliocentric distance and direction of spacecraft motion with respect to the interplanetary dust cloud. Because the average data transmission rate was very low, some data were not received on the ground. Complete data sets for 358 “big” impacts were received, but the other 111 “big” impacts were only counted. The observed impact rates are compared with a model of the meteoroid complex.


Planetary and Space Science | 1995

Two years of Ulysses dust data

E. Grün; M. Baguhl; N. Divine; H. Fechtig; Douglas P. Hamilton; Martha S. Hanner; J. Kissel; Bertil Anders Lindblad; D. Linkert; G. Linkert; I. Mann; J. A. M. McDonnell; Gregor E. Morfill; C. Polanskey; R. Riemann; G. Schwehm; N. Siddique; P. Staubach; H. A. Zook

Abstract From October 18, 1990 to February 8, 1992 the Ulysses spacecraft traversed interplanetary space between the Earth and Jupiter; at Jupiter the spacecraft was deflected below the ecliptic onto a highly-inclined orbit ( i ∼80°). Here, we report on dust impact data obtained from launch until the end of 1992, nearly a year after the Jupiter flyby. During that time (792 days), the Ulysses dust detector recorded 968 impacts of dust particles with masses ranging from 10 −16 g to 10 −18 g. The impact rate varied from as low as one impact per week during quiet times to more than one per minute during the dust stream of March 10–11, 1992. In this paper, we present and describe the complete data set including both raw and reduced data. The performance of the sensor, which has been very satisfactory so far, is discussed in detail together with the noise discrimination scheme employed. The instruments detection threshold is given as a function of both the particles mass and its speed relative to Ulysses . The derived impact rates and the distribution of particle masses, speeds and impact directions are compared to a model of the meteoroid complex.


Planetary and Space Science | 1993

Identification of “small” dust impacts in the Ulysses dust detector data

M. Baguhl; E. Grün; G. Linkert; D. Linkert; N. Siddique

Abstract Since October 1990, 3 weeks after the launch of the Ulysses spacecraft, the dust detector onboard recorded impacts of cosmic dust particles. Besides dust impacts, the detector recorded noise from a variety of sources. So far, a very rigid scheme had been applied to eliminate noise from impact data. The data labeled “big” dust impacts previously led to the identification of interstellar dust and of dust streams from Jupiter. The analysis presented here is concerned with data of signals of small amplitudes which are strongly contaminated by noise. Impacts identified in this data set are called “small” impacts. It is shown that dust impacts can be clearly distinguished from noise for most of the events due to the multi-coincidence characteristics of the instrument. 516 “small” impacts have been identified. For an additional 119 events, strong arguments can be given that they are probably small dust impacts. Thereby, the total number of dust impacts increases from 333 to 968 in the time period from 28 October 1990 to 31 December 1992. This increase permits a better statistical analysis, especially of the Jupiter dust streams which consist mostly of small and fast particles. Additional dust streams have been identified between the already known streams before and after Jupiter flyby. The dependence of the deflection from the Jupiter direction, the stream intensity and width on Jupiter distance support the assertion that they have been emitted from the Jovian system. The masses of the 635 “small” dust particles range from 6 × 10−17 to 3 × 10−10 g with a mean value of 1 × 10−12 g, which compares to a range from 1 × 10−16 to 4 × 10−9 g with a mean value of 2 × 10−11 g for the previously identified 333 “big” dust particles.


Planetary and Space Science | 1998

Three years of Galileo dust data. II. 1993-1995

Harald Krüger; E. Grün; Douglas P. Hamilton; M. Baguhl; Stanley F. Dermott; H. Fechtig; B. A. Gustafson; Martha S. Hanner; Mihaly Horanyi; J. Kissel; Bertil Anders Lindblad; D. Linkert; G. Linkert; I. Mann; J. A. M. McDonnell; Gregor E. Morfill; C. Polanskey; R. Riemann; G. Schwehm; Ralf Srama; H. A. Zook

Abstract Between January 1993–December 1995, the Galileo spacecraft traversed interplanetaryspace between Earth and Jupiter and arrived at Jupiter on 7 December 1995. The dust instrumentonboard the spacecraft was operating during most of the time and data from the instrument wereobtained via memory readouts which occurred at rates between twice per day and once per week.All events were classified by an onboard program into 24 categories. Noise events were usuallyrestricted to the lowest categories (class 0). During Galileos passage through Jupiters radiationbelts on 7 December 1995, several of the higher categories (classes 1 and 2) also show evidencefor contamination by noise. The highest categories (class 3) were noise-free all the time. Arelatively constant impact rate of interplanetary and interstellar (big) particles of 0.4 impacts perday was detected over the whole three-year time span. In the outer solar system (outside about2.6 AU) they are mostly of interstellar origin, whereas in the inner solar system they are mostlyinterplanetary particles. Within about 1.7 AU from Jupiter intense streams of small dust particleswere detected with impact rates of up to 20,000 per day whose impact directions are compatiblewith a Jovian origin. Two different populations of dust particles were detected in Jovianmagnetosphere: small stream particles during Galileos approach to the planet and big particlesconcentrated closer to Jupiter between the Galilean satellites. There is strong evidence that thedust stream particles are orders of magnitude smaller in mass and faster than the instrumentscalibration, whereas the calibration is valid for the big particles. Because the data transmissionrate was very low, the complete data set for only a small fraction (2525) of all detected particlescould be transmitted to Earth; the other particles were only counted. Together with the 358particles published earlier, information about 2883 particles detected by the dust instrumentduring Galileos six years journey to Jupiter is now available.


Geophysical Research Letters | 1997

Dust measurements in the Jovian magnetosphere

E. Grün; Harald Krüger; Stanley F. Dermott; H. Fechtig; A. L. Graps; H. A. Zook; B. A. Gustafson; Douglas P. Hamilton; Martha S. Hanner; A. Heck; Mihaly Horanyi; J. Kissel; Bertil Anders Lindblad; D. Linkert; G. Linkert; I. Mann; J. A. M. McDonnell; Gregor E. Morfill; C. Polanskey; G. Schwehm; Ralf Srama

Dust measurements have been obtained with the dust detector onboard the Galileo spacecraft inside a distance of about 60RJ from Jupiter (Jupiter radius, RJ = 71,492 km) during two periods of about 8 days around Galileos closest approaches to Ganymede on 27 June and on 6 Sept 1996. The impact rate of submicrometer-sized particles fluctuated by a factor of several hundred with a period of about 10 hours, implying that their trajectories are strongly affected by the interaction with the Jovian magnetic field. Concentrations of small dust impacts were detected at the times of Ganymede closest approaches that could be secondary ejecta particles generated upon impact of other particles onto Ganymedes surface. Micrometer-sized dust particles, which could be on bound orbits about Jupiter, are concentrated in the inner Jovian system inside about 20RJ from Jupiter.


Planetary and Space Science | 2001

One year of Galileo dust data from the Jovian system: 1996

Harald Krüger; E. Grün; Amara Lynn Graps; D. Bindschadler; Stanley F. Dermott; H. Fechtig; B. A. Gustafson; Douglas P. Hamilton; M. S. Hanner; M. Horányi; J. Kissel; Bertil Anders Lindblad; D. Linkert; G. Linkert; I. Mann; J. A. M. McDonnell; Gregor E. Morfill; C. Polanskey; G. Schwehm; Ralf Srama; H. A. Zook

Abstract The dust detector system onboard Galileo has recoding dust impacts in circumjovian space since the spacecraft was injected into a bound orbit about Jupiter in December 1995. This is the sixth in a series of papers dedicated to presenting Galileo and Ulysses dust data. We present data from the Galileo dust instrument for the period January to December 1996 when the spacecraft completed four orbits about Jupiter (G1, G2, C3 and E4). Data were obtained as high-resolution realtime science data or recorded data during a time period of 100 days, or via memory read-outs during the remaining times. Because the data transmission rate of the spacecraft is very low, the complete data set (i.e. all parameters measured by the instrument during impact of a dust particle) for only 2% (5353) of all particles detected could be transmitted to Earth; the other particles were only counted. Together with the data for 2883 particles detected during Galileos interplanetary cruise and published earlier, complete data of 8236 particles detected by the Galileo dust instrument from 1989 to 1996 are now available. The majority of particles detected are tiny grains (about 10 nm in radius) originating from Jupiters innermost Galilean moon Io. These grains have been detected throughout the Jovian system and the highest impact rates exceeded 100 min −1 . A small number of grains has been detected in the close vicinity of the Galilean moons Europa, Ganymede and Callisto which belong to impact-generated dust clouds formed by (mostly submicrometer sized) ejecta from the surfaces of the moons (Kruger et al., 1999e. Nature 399, 558). Impacts of submicrometer to micrometer sized grains have been detected throughout the Jovian system and especially in the region between the Galilean moons.


Science | 1996

Dust Measurements During Galileo's Approach to Jupiter and Io Encounter

E. Grün; Douglas P. Hamilton; R. Riemann; Stanley F. Dermott; H. Fechtig; B. A. Gustafson; Martha S. Hanner; A. Heck; Mihaly Horanyi; J. Kissel; Harald Krüger; Bertil Anders Lindblad; D. Linkert; G. Linkert; I. Mann; J. A. M. McDonnell; Gregor E. Morfill; C. Polanskey; G. Schwehm; Ralf Srama; H. A. Zook

About a hundred dust impacts per day were detected during the first week in December 1995 by Galileo during its approach to Jupiter. These impacts were caused by submicrometer-sized particles that were just above the detection limit. After the closest approach to Io on 7 December, impacts of these small particles ceased. This effect is expected for dust grains emitted from Io that exit the field of view of the instrument after the flyby. The impact rate of bigger micrometer-sized dust grains continued to increase toward Jupiter. These dust particles are in orbit about Jupiter or are interplanetary grains that are gravitationally concentrated near Jupiter.

Collaboration


Dive into the D. Linkert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martha S. Hanner

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Schwehm

European Space Research and Technology Centre

View shared research outputs
Top Co-Authors

Avatar

Ralf Srama

University of Stuttgart

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge