Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. M. Lowder is active.

Publication


Featured researches published by D. M. Lowder.


The Astrophysical Journal | 2001

Cosmic-Ray Electrons and Positrons from 1 to 100 GeV: Measurements with HEAT and Their Interpretation

Michael A. DuVernois; S. W. Barwick; James J. Beatty; A. Bhattacharyya; Charles R. Bower; Christopher James Chaput; S. Coutu; G. A. de Nolfo; D. M. Lowder; S. McKee; D. Müller; J. Musser; Scott Lowry Nutter; E. Schneider; Simon P. Swordy; G. Tarle; Andrew David Tomasch; E. B. Torbet

Measurements of the energy spectra of negative electrons and positrons have been performed with the High-Energy Antimatter Telescope (HEAT) in two balloon flights—1994 May from Fort Sumner, NM, and 1995 August from Lynn Lake, Manitoba. We present the combined data set from these two flights, covering the energy range 1-100 GeV. We compare our data with results from other groups and discuss the data in the context of diffusive propagation models. There is some evidence that primary electrons above 10 GeV and cosmic-ray nuclei exhibit the same energy spectrum at the source, but that the source spectrum becomes harder at lower energy. Within the experimental uncertainties, the intensity of positrons is consistent with a purely secondary origin, due to nuclear interactions in interstellar space.


Astroparticle Physics | 2000

The AMANDA neutrino telescope: principle of operation and first results

E. Andres; P. Askebjer; S. W. Barwick; R. Bay; Lars Bergström; A. Biron; J. Booth; A. Bouchta; Staffan Carius; M. Carlson; D. F. Cowen; E. Dalberg; T. DeYoung; P. Ekström; B. Erlandson; Ariel Goobar; L. Gray; A. Hallgren; F. Halzen; R. Hardtke; S. Hart; Y. He; H. Heukenkamp; G. C. Hill; P. O. Hulth; S. Hundertmark; J. Jacobsen; Andrew Jones; V. Kandhadai; A. Karle

AMANDA is a high-energy neutrino telescope presently under construction at the geographical South Pole. In the Antarctic summer 1995/96, an array of 80 optical modules (OMs) arranged on 4 strings (AMANDA-B4) was deployed at depths between 1.5 and 2 km. In this paper we describe the design and performance of the AMANDA-B4 prototype, based on data collected between February and November 1996. Monte Carlo simulations of the detector response to down-going atmospheric muon tracks show that the global behavior of the detector is understood. We describe the data analysis method and present first results on atmospheric muon reconstruction and separation of neutrino candidates. The AMANDA array was upgraded with 216 OMs on 6 new strings in 1996/97 (AMANDA-B10), and 122 additional OMs on 3 strings in 1997/98.


The Astrophysical Journal | 1997

Measurements of the cosmic ray positron fraction from 1-GeV to 50-GeV

S. W. Barwick; S. Coutu; James H. Knapp; E. Schneider; E. B. Torbet; D. Müller; C. R. Bower; G. Tarle; J. Musser; G. A. de Nolfo; Scott Lowry Nutter; Christopher James Chaput; Simon P. Swordy; D. M. Lowder; J. J. Beatty; S. McKee; A. Bhattacharyya; Andrew David Tomasch

Two measurements of the cosmic-ray positron fraction as a function of energy have been made using the High-Energy Antimatter Telescope (HEAT) balloon-borne instrument. The first flight took place from Fort Sumner, New Mexico, in 1994 and yielded results above the geomagnetic cutoff energy of 4.5 GeV. The second flight, from Lynn Lake, Manitoba, in 1995, permitted measurements over a larger energy interval, from 1 to 50 GeV. We present results on the positron fraction based on data from the Lynn Lake flight and compare these with the previously published results from the Fort Sumner flight. The results confirm that the positron fraction does not increase with energy above ≈ 10 GeV, although a small excess above purely secondary production cannot be ruled out. At low energies the positron fraction is slightly larger than that reported from measurements made in the 1960s. This effect could possibly be a consequence of charge dependence in the level of solar modulation.


The Astrophysical Journal | 1997

MEASUREMENTS OF THE COSMIC-RAY POSITRON FRACTION FROM 1 TO 50 GeV

S. W. Barwick; James J. Beatty; A. Bhattacharyya; C. Bower; Christopher James Chaput; S. Coutu; G.A. deNolfo; J. Knapp; D. M. Lowder; S. McKee; D. Müller; J. Musser; Scott Lowry Nutter; E. Schneider; Simon P. Swordy; Gregory Tarle; Andrew David Tomasch; E. B. Torbet

Two measurements of the cosmic-ray positron fraction as a function of energy have been made using the High-Energy Antimatter Telescope (HEAT) balloon-borne instrument. The first flight took place from Fort Sumner, New Mexico, in 1994 and yielded results above the geomagnetic cutoff energy of 4.5 GeV. The second flight, from Lynn Lake, Manitoba, in 1995, permitted measurements over a larger energy interval, from 1 to 50 GeV. We present results on the positron fraction based on data from the Lynn Lake flight and compare these with the previously published results from the Fort Sumner flight. The results confirm that the positron fraction does not increase with energy above ≈ 10 GeV, although a small excess above purely secondary production cannot be ruled out. At low energies the positron fraction is slightly larger than that reported from measurements made in the 1960s. This effect could possibly be a consequence of charge dependence in the level of solar modulation.


Science | 1995

Optical properties of the South pole ice at depths between 0.8 and 1 kilometer.

P. Askebjer; S. W. Barwick; Lars Bergström; A. Bouchta; Staffan Carius; A. Coulthard; K. Engel; B. Erlandsson; Ariel Goobar; L. Gray; A. Hallgren; F. Halzen; P. O. Hulth; J. Jacobsen; Sverker Johansson; V. Kandhadai; I. Liubarsky; D. M. Lowder; Timothy Miller; P. Mock; R. Morse; R. Porrata; P. B. Price; A. Richards; H. Rubinstein; E. Schneider; Q. Sun; S. Tilav; C. Walck; G. Yodh

The optical properties of the ice at the geographical South Pole have been investigated at depths between 0.8 and 1 kilometer. The absorption and scattering lengths of visible light (∼515 nanometers) have been measured in situ with the use of the laser calibration setup of the Antarctic Muon and Neutrino Detector Array (AMANDA) neutrino detector. The ice is intrinsically extremely transparent. The measured absorption length is 59 � 3 meters, comparable with the quality of the ultrapure water used in the Irvine-Michigan-Brookhaven and Kamiokande proton-decay and neutrino experiments and more than twice as long as the best value reported for laboratory ice. Because of a residual density of air bubbles at these depths, the trajectories of photons in the medium are randomized. If the bubbles are assumed to be smooth and spherical, the average distance between collisions at a depth of 1 kilometer is about 25 centimeters. The measured inverse scattering length on bubbles decreases linearly with increasing depth in the volume of ice investigated.


The Astrophysical Journal | 1990

Limits on the antiproton/proton ratio in the cosmic radiation from 100 MeV to 1580 MeV

M. H. Salamon; S. McKee; J. Musser; Gregory Tarle; Andrew David Tomasch; C. Bower; R. Heinz; J.L. Miller; S. Mufson; S. W. Barwick; G. Gerbier; D. M. Lowder; P. B. Price; B. Zhou; J. J. Beatty; Steven P. Ahlen

A search for antiprotons (p-bars) in the cosmic radiation with energies below 1580 MeV at the top of the atmosphere was performed using the PBAR balloon-borne magnetic spectrometer. No antiprotons were observed in 124,000 proton events. For the energy interval 100-640 MeV, an upper limit is reported to the p-bar/p ratio of 2.8 x 10 to the -5th at the top of the atmosphere, after correcting for instrumental efficiencies and contributions from secondary particles. No antiproton was observed in the energy interval 640-1580 MeV, which yields an upper limit to the p-bar/p ratio of 6.1 x 10. By combining both data sets, the limits on the p-bar/p ratio can be improved to 2.0 x 10 to the -5th. The detector performance and instrumental efficiencies of the individual detector components are discussed. A detail Monte Carlo calculation was used to evaluate the instrumental efficiency for both antiprotons and protons as a function of momentum. 48 refs.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1997

THE HIGH-ENERGY ANTIMATTER TELESCOPE (HEAT) : AN INSTRUMENT FOR THE STUDY OF COSMIC-RAY POSITRONS

S. W. Barwick; James J. Beatty; C. Bower; Christopher James Chaput; S. Coutu; G. A. de Nolfo; Don Wise Ellithorpe; David J. Ficenec; J. Knapp; D. M. Lowder; S. McKee; D. Müller; J. Musser; S.L̇. Nutter; E. Schneider; Simon P. Swordy; K.K. Tang; Gregory Tarle; Andrew David Tomasch; E. B. Torbet

Abstract The HEAT (High-Energy Antimatter Telescope) instrument has been developed for a series of observations in cosmic-ray astrophysics that require the use of a superconducting magnet spectrometer. This paper describes the first configuration of HEAT which is optimized for the detection of cosmic-ray electrons and positrons below 100 GeV. In addition to the spectrometer, a combination of time-of-flight scintillators, a transition radiation detector, and an electromagnetic shower counter, provides particle identification, energy measurement, and powerful discrimination against the large background of protons. The instrument was successfully flown aboard high-altitude balloons in 1994 and 1995. The design and construction of the spectrometer and of the detector systems are described, and the performance of the instrument is demonstrated with data obtained in flight.


The Astrophysical Journal | 1997

Measurements of the Cosmic-Ray Positron Fraction from 1 to 50 G[CLC]e[/CLC]V

S. W. Barwick; J. J. Beatty; A. Bhattacharyya; C. R. Bower; Christopher James Chaput; S. Coutu; G. A. de Nolfo; James H. Knapp; D. M. Lowder; S. McKee; D. Müller; J. Musser; Scott Lowry Nutter; E. Schneider; Simon P. Swordy; G. Tarle; Andrew David Tomasch; E. B. Torbet

Two measurements of the cosmic-ray positron fraction as a function of energy have been made using the High-Energy Antimatter Telescope (HEAT) balloon-borne instrument. The first flight took place from Fort Sumner, New Mexico, in 1994 and yielded results above the geomagnetic cutoff energy of 4.5 GeV. The second flight, from Lynn Lake, Manitoba, in 1995, permitted measurements over a larger energy interval, from 1 to 50 GeV. We present results on the positron fraction based on data from the Lynn Lake flight and compare these with the previously published results from the Fort Sumner flight. The results confirm that the positron fraction does not increase with energy above ≈ 10 GeV, although a small excess above purely secondary production cannot be ruled out. At low energies the positron fraction is slightly larger than that reported from measurements made in the 1960s. This effect could possibly be a consequence of charge dependence in the level of solar modulation.


Journal of Geophysical Research | 1998

Cosmic ray reentrant electron albedo: High-Energy Antimatter Telescope balloon measurements from Fort Sumner, New Mexico

S. W. Barwick; J. J. Beatty; C. R. Bower; Christopher James Chaput; S. Coutu; G. A. de Nolfo; Michael A. DuVernois; David J. Ficenec; James H. Knapp; D. M. Lowder; S. McKee; D. Müller; J. Musser; Scott Lowry Nutter; E. Schneider; Simon P. Swordy; G. Tarle; Andrew David Tomasch; E. B. Torbet

The High-Energy Antimatter Telescope (HEAT) balloon cosmic ray detector flew from Fort Sumner, New Mexico on May 3–5, 1994. The instrument measured electron and positron abundances and spectra from ∼1 to 100 GeV at a vertical geomagnetic cutoff rigidity that varied between 4.0 and 4.5 GV. The intensities of electrons and positrons have been measured as a function of atmospheric depth between 3.8 and 7.4 g cm−2 of overburden. At magnetic rigidities below cutoff, the intensity of downward moving e± consists of secondary (spallogenic) particles and the reentrant (or return) albedo. We determine the contribution of the reentrant electron albedo and compare it with earlier measurements and limits at similar geomagnetic cutoff levels. In the range of 1.0–2.4 GeV, the reentrant albedo component amounts to 40% of the total electron intensity observed.


Nuclear Physics | 1998

The AMANDA neutrino telescope

E. Andres; P. Askebjer; S. W. Barwick; R. Bay; Lars Bergström; A. Biron; J. Booth; O. Botner; A. Bouchta; Staffan Carius; M. Carlson; W. Chinowsky; D. Chirkin; J. M. Conrad; C. G. S. Costa; D. F. Cowen; E. Dalberg; T. DeYoung; J. Edsjö; P. Ekström; Ariel Goobar; L. Gray; A. Hallgren; F. Halzen; R. Hardtke; S. Hart; Y. He; C.P. de los Heros; G. C. Hill; P. O. Hulth

We present new results from the Antarctic Muon And Neutrino Detector Array (AMANDA), located at the South Pole in Antarctica. AMANDA-II, commissioned in 2000, is a multipurpose high energy neutrino telescope with a broad physics and astrophysics scope. We summarize the results from searches for a variety of sources of ultra-high energy neutrinos: TeV-PeV diffuse sources by measuring either muon tracks or cascades, neutrinos in excess of PeV by searching for muons traveling in the down-going direction, point sources, neutrinos originating from GRBs, and dark matter in the center of the Earth or Sun.

Collaboration


Dive into the D. M. Lowder's collaboration.

Top Co-Authors

Avatar

S. W. Barwick

University of California

View shared research outputs
Top Co-Authors

Avatar

E. Schneider

University of California

View shared research outputs
Top Co-Authors

Avatar

J. Musser

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. B. Price

University of California

View shared research outputs
Top Co-Authors

Avatar

F. Halzen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory Tarle

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Jacobsen

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge