D. M. Sether
University of Hawaii
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. M. Sether.
Phytopathology | 1998
D. M. Sether; Diane E. Ullman; J. S. Hu
ABSTRACT Closterovirus-like particles associated with mealybug wilt of pineapple were acquired and transmitted by the pink pineapple mealybug, Dysmicoccus brevipes, and the gray pineapple mealybug, D. neobrevipes. Mealybugs acquired pineapple mealybug wilt-associated virus (PMWaV) from infected pineapple plants or detached leaves. The virus was detected in plants by tissue blot immunoassay and confirmed by immunosorbent electron microscopy. Plants exposed to mealybugs reared on PMWaV-free pineapple tissue remained uninfected. The presence of ants was correlated with an increased rate of virus spread when caged with D. brevipes. All stages of D. neobrevipes acquired PMWaV, although vector efficiency decreased significantly in older adult females. The probability of a single third-instar immature transmitting the virus was 0.04. Both species of mealybug acquired and transmitted PMWaV from infected pineapple material that had been clonally propagated for decades, and both species acquired PMWaV from sources previously infected with the virus by the other mealybug species.
Plant Disease | 1997
J. S. Hu; D. M. Sether; X. P. Liu; M. Wang; F. Zee; Diane E. Ullman
Specific monoclonal antibodies made to a pineapple closterovirus (PCV) were used in a tissue blotting immunoassay (TBIA) for the detection of PCV in pineapple. More than 2,000 samples were tested in 5 days by one person using this rapid and reliable assay. A survey was conducted using this assay to test more than 20,000 Hawaiian pineapple samples for the presence of PCV. PCV was detected in symptomless pineapple plants in the field and in the USDA pineapple germ plasm collection. Studies of the association of PCV with mealybug wilt of pineapple (MWP) suggest that PCV may be involved in MWP.
Plant Disease | 2005
D. M. Sether; Michael J. Melzer; J.L. Busto; F. Zee; J. S. Hu
Mealybug wilt of pineapple (MWP) is one of the most destructive diseases of pineapple (Ananas comosus) worldwide. At least one Ampelovirus species, Pineapple mealybug wilt associated virus-2 (PMWaV-2), and mealybug feeding are involved in the etiology of MWP. A previously undescribed Ampelovirus sharing highest homology with PMWaV-1 and a putative deletion mutant sharing highest homology with PMWaV-2 were detected with reverse transcription-polymerase chain reaction (RT-PCR) assays using degenerate primers. Results were verified with additional sequence information and by immunosorbent electron microscopy. Sequence homology between the virus tentatively designated PMWaV-3, and PMWaV-1 and PMWaV-2, decreases toward the N-terminal across the HSP70 homolog, small hydrophobic protein, and RNA-dependent RNA polymerase open reading frames (ORF). Putative PMWaV-3 could not be detected with four different monoclonal antibodies specific for PMWaV-1 and PMWaV-2. The potential deletion mutant spanning the N-terminal of the HSP70 region was obtained from a pineapple accession from Zaire maintained at the USDA-ARS National Clonal Germplasm Repository in Hawaii. Putative PMWaV-3, like PMWaV-1 and PMWaV-2, is transmissible separately or in combination with other PMWaVs by Dysmicoccus brevipes and D. neobrevipes mealybugs. Plants infected with PMWaV-3 that were continuously exposed to mealybugs did not develop symptoms of MWP in the absence of PMWaV-2. Specific RT-PCR assays were developed for detection of putative PMWaV-3 and the deletion mutant.
Phytopathology | 2012
Michael J. Melzer; D. M. Sether; Wayne B. Borth; J. S. Hu
A Citrus volkameriana tree displaying symptoms similar to citrus leprosis on its leaves and bark was found in Hawaii. Citrus leprosis virus C (CiLV-C)-specific detection assays, however, were negative for all tissues tested. Short, bacilliform virus-like particles were observed by transmission electron microscopy in the cytoplasm of symptomatic leaves but not in healthy controls. Double-stranded (ds) RNAs ≈8 and 3 kbp in size were present in symptomatic leaf tissue but not in healthy controls. Excluding poly(A) tails, the largest molecule, RNA1, was 8,354 bp in length. The ≈3 kbp dsRNA band was found to be composed of two distinct molecules, RNA2 and RNA3, which were 3,169 and 3,113 bp, respectively. Phylogenetic analyses indicated that the RNA-dependent RNA polymerase (RdRp) domain located in RNA1 was most closely related to the RdRp domain of CiLV-C. A reverse-transcription polymerase chain reaction assay developed for the detection of this virus was used to screen nearby citrus trees as well as Hibiscus arnottianus plants with symptoms of hibiscus green spot, a disease associated with infection by Hibiscus green spot virus (HGSV). All nearby citrus trees tested negative with the assay; however, symptomatic H. arnottianus plants were positive. All three RNAs were present in symptomatic H. arnottianus and were >98% identical to the RNAs isolated from C. volkameriana. We contend that the virus described in this study is HGSV, and propose that it be the type member of a new virus genus, Higrevirus.
Phytopathology | 2002
D. M. Sether; J. S. Hu
ABSTRACT The roles of Pineapple mealybug wilt-associated viruses (PMWaVs) and mealybug (Dysmicoccus spp.) feeding in the etiology of mealybug wilt of pineapple (MWP) were evaluated. Container-grown pineapple (Ananas comosus) plants from five commercially grown Hawaiian proprietary selections and a field study utilizing a randomized complete block design were used to test four treatments for induction of MWP: PMWaV-1-free and PMWaV-1-infected plants maintained mealybug-free, and PMWaV-1-free and PMWaV-1-infected plants that received monthly applications of nonviruliferous mealybugs. A second PMWaV, PMWaV-2, was identified in some of the test plants during the course of these studies and was shown to be an integral factor in MWP etiology. Typical MWP symptoms developed only in plants infected with PMWaV-2 and exposed to mealybugs. MWP did not develop in PMWaV-1-free or PMWaV-1-infected plants that were exposed to mealybugs, or in mealy-bug-free plants infected with PMWaV-1, PMWaV-2, or both viruses. Plants from all five Hawaiian proprietary selections developed MWP when PMWaV-2 infected plants were exposed to mealybug feeding. A PMWaV-2-specific monoclonal antibody was produced that decorated the particles in immunosorbent electron microscopy and detected the virus in tissue blot immunoassays. PMWaV-2 was acquired and transmitted by pink and gray pineapple mealybugs (Dysmicoccus spp.) to pineapple plants, and these plants subsequently developed MWP symptoms while sustaining mealybug populations.
Plant Disease | 2001
D. M. Sether; Alexander V. Karasev; C. Okumura; C. Arakawa; F. Zee; M. M. Kislan; J.L. Busto; J. S. Hu
Surveys for Pineapple mealybug wilt-associated virus-1 (PMWaV-1) and PMWaV-2 were conducted on pineapple samples from Hawaii and around the world. Tissue blot immunoassays (TBIAs) with two different monoclonal antibodies (MAb) specific to either PMWaV-1 or PMWaV-2 indicated that both closteroviruses are widely distributed throughout the pineapple-growing areas of the world. In the worldwide survey, PMWaV-1 was found in 80% of the mea-lybug wilt of pineapple (MWP)-symptomatic and 78% of the asymptomatic pineapple plants tested. A subset of plants was tested for PMWaV-2; 100% of the symptomatic plants and 12% of the asymptomatic plants were positive for this virus. A reverse transcription-polymerase chain reaction (RT-PCR) assay was developed to differentiate between PMWaV-1 and PMWaV-2. Oligonucleotide primers were designed using distinct regions of the HSP 70 homolog genes of the two viruses. PMWaV-specific RT-PCR assays and TBIAs were used to screen the pineapple accessions maintained at the United States Department of Agriculture-Agricultural Research Service National Clonal Germplasm Repository for PMWaV infection; 73% of the accessions were found infected with at least one PMWaV. Pineapple accessions found PMWaV-free were challenged with viruliferous mealybugs to test for immunity to PMWaV-1. No immune germ plasm was identified. Potential alternative virus hosts were screened for infection with virus-specific RT-PCR assays and TBIAs and were also challenged with viruliferous mealybugs. No alternate hosts of PMWaV-1 or PMWaV-2 were identified. PMWaV-1 infection was eliminated through axillary and apical bud propagation from infected crowns. Strategies to manage MWP are discussed.
Virus Genes | 2011
Michael J. Melzer; D. M. Sether; Wayne B. Borth; Edwin F. Mersino; J. S. Hu
The ti plant (Cordyline fruticosa L.) is culturally important throughout most of Polynesia and has considerable economic importance in Hawai’i where the foliage is commonly used in cultural ceremonies as well as food and ornamental industries. In Hawai’i, ringspot symptoms were recently observed on leaves of the common green variety of ti growing in Kahalu’u on the island of O’ahu, and Wailuku and Hana on the island of Maui. High molecular weight double-stranded (ds)RNAs were isolated from the leaves of symptomatic plants as well as plants without symptoms. A cDNA library derived from the dsRNAs present in symptomatic plants was generated and sequenced. These sequences indicated at least four distinct clostero-like viruses were present in the plants, and phylogenetic analyses suggested they were most closely related to Little cherry virus 1, an unassigned member of the family Closteroviridae. The 16,883 nucleotide genome of one of these viruses was determined and predicted to contain ten open reading frames with an organization typical of closteroviruses. Reverse-transcription PCR revealed this virus was present in both symptomatic and asymptomatic ti plants, making it unlikely to be responsible for the observed ringspot symptoms. We propose the name Cordyline virus 1 (CoV-1) for this virus and include it as a new, unassigned member of the family Closteroviridae.
Plant Disease | 2012
D. M. Sether; Michael J. Melzer; W. B. Borth; J. S. Hu
Members of the genus Badnavirus (family Caulimovirdae) have been identified in dicots and monocots worldwide. The genome of a pineapple badnavirus, designated Pineapple bacilliform CO virus-HI1 (PBCOV-HI1), and nine genomic variants (A through H) were isolated and sequenced from pineapple, Ananas comosus, in Hawaii. The 7,451-nucleotide genome of PBCOV-HI1 possesses three open reading frames (ORFs) encoding putative proteins of 20 (ORF1), 15 (ORF2), and 211 (ORF3) kDa. ORF3 encodes a polyprotein that includes a putative movement protein and viral aspartyl proteinase, reverse transcriptase, and RNase H regions. Three distinct groups of putative endogenous pineapple pararetroviral sequences and Metaviridae-like retrotransposons encoding long terminal repeat, reverse-transcriptase, RNase H, and integrase regions were also identified from the pineapple genome. Detection assays were developed to distinguish PBCOV-HI1 and genomic variants, putative endogenous pararetrovirus sequences, and Ananas Metaviridae sequences also identified in pineapple. PBCOV-HI1 incidences in two commercially grown pineapple hybrids, PRI 73-114 and PRI 73-50, was 34 to 68%. PBCOV-HI1 was transmitted by gray pineapple mealybugs, Dysmicoccus neobrevipes, to pineapple.
Plant Disease | 2010
Michael J. Melzer; D. Y. Ogata; S. K. Fukuda; R. Shimabuku; W. B. Borth; D. M. Sether; J. S. Hu
Tomato yellow leaf curl disease, caused by the begomovirus Tomato yellow leaf curl virus (TYLCV; family Geminiviridae), is an economically important disease of tomato (Solanum lycopersicum L.) that can be very destructive in tropical and subtropical regions (1). In October 2009, tomato plants showing stunted new growth, interveinal chlorosis, and upward curling of leaf margins were reported by a residential gardener in Wailuku, on the island of Maui. Similar symptoms were observed in approximately 200 tomato plants at a University of Hawaii research farm in Poamoho, on the island of Oahu in November 2009. The similarity between these symptoms and those of tomato yellow leaf curl disease and the presence of whiteflies (Bemisia spp.), the vector of TYLCV, suggested the causal agent was a geminivirus such as TYLCV. Total nucleic acids were extracted from a tomato plant sample from Wailuku and Poamoho and used in a PCR assay with degenerate primers PAR1c715 and PAL1v1978 for geminivirus detection (4). The ~1.5-kbp amplicon expected to be produced from a geminivirus template was generated from the symptomatic tomato plant samples but not from a greenhouse-grown control tomato plant. The amplicons were cloned by the pGEM-T Easy vector (Promega, Madison, WI). Three clones from each sample were sequenced, revealing 97 to 99% nucleotide identity to TYLCV sequences in GenBank and a 98.9% nucleotide identity between the Wailuku (Accession No. GU322424) and Poamoho (Accession No. GU322423) isolates. A multiplex PCR assay for the detection and discrimination between the IL and Mld clades of TYLCV was also performed on these isolates (2). A ~0.8-kbp amplicon was generated from both isolates confirming the presence of TYLCV and their inclusion into the TYLCV-IL clade (2). Seven symptomatic and three asymptomatic tomato plant samples from Poamoho were tested for TYLCV using a squash-blot hybridization assay (3) utilizing a digoxigenin-labeled probe derived from the ~1.5-kbp PCR amplicon. All symptomatic tomato plants and one asymptomatic tomato plant were found to be infected with TYLCV. How the virus entered Hawaii and how long it has been present is unknown. The most plausible route is through infected plant material such as an asymptomatic alternative host rather than viruliferous whiteflies. It appears TYLCV is not a recent introduction into Hawaii since the Wailuku gardener observed similar disease symptoms for a few years before submitting samples for testing. In January 2010, TYLCV was also detected in two commercial tomato farms on Oahu, posing a serious threat to the states
Plant Disease | 2010
D. M. Sether; W. B. Borth; Michael J. Melzer; J. S. Hu
10 million annual tomato crop. References: (1) H. Czosnek and H. Laterrot. Arch. Virol. 142:1392, 1997. (2) P. Lefeuvre et al. J. Virol. Methods 144:165, 2007. (3) N. Navot et al. Phytopathology 79:562, 1989. (4) M. R. Rojas et al. Plant Dis. 77:340, 1993.