Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D.M. Wachs is active.

Publication


Featured researches published by D.M. Wachs.


Nuclear Engineering and Technology | 2014

Irradiation performance of U-Mo monolithic fuel

Mitchell K. Meyer; Jian Gan; Jan-Fong Jue; Dennis D. Keiser; E. Perez; A.B. Robinson; D.M. Wachs; N. E. Woolstenhulme; G.L. Hofman; Yeon Soo Kim

High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.


Nuclear Engineering and Technology | 2013

Modeling of Interaction Layer Growth Between U-Mo Particles and an Al Matrix

Yeon Soo Kim; G.L. Hofman; Ho Jin Ryu; Jong Man Park; A.B. Robinson; D.M. Wachs

Interaction layer growth between U-Mo alloy fuel particles and Al in a dispersion fuel is a concern due to the volume expansion and other unfavorable irradiation behavior of the interaction product. To reduce interaction layer (IL) growth, a small amount of Si is added to the Al. As a result, IL growth is affected by the Si content in the Al matrix. In order to predict IL growth during fabrication and irradiation, empirical models were developed. For IL growth prediction during fabrication and any follow-on heating process before irradiation, out-of-pile heating test data were used to develop kinetic correlations. Two out-of-pile correlations, one for the pure Al matrix and the other for the Al matrix with Si addition, respectively, were developed, which are Arrhenius equations that include temperature and time. For IL growth predictions during irradiation, the out-of-pile correlations were modified to include a fission-rate term to consider fission enhanced diffusion, and multiplication factors to incorporate the Si addition effect and the effect of the Mo content. The in-pile correlation is applicable for a pure Al matrix and an Al matrix with the Si content up to 8 wt%, for fuel temperatures up to 200 ℃, and for Mo content in the range of 6 ? 10wt%. In order to cover these ranges, in-pile data were included in modeling from various tests, such as the US RERTR-4, -5, -6, -7 and -9 tests and Korea’s KOMO-4 test, that were designed to systematically examine the effects of the fission rate, temperature, Si content in Al matrix, and Mo content in U-Mo particles. A model converting the IL thickness to the IL volume fraction in the meat was also developed.


Nuclear Technology | 2013

Improved Irradiation Performance of Uranium-Molybdenum/Aluminum Dispersion Fuel by Silicon Addition in Aluminum

Yeon Soo Kim; G.L. Hofman; A.B. Robinson; D.M. Wachs

Uranium-molybdenum fuel particle dispersion in aluminum is a form of fuel under development for conversion of high-power research and test reactors from highly enriched to low-enriched uranium in the U.S. Global Threat Reduction Initiative program (also known as the Reduced Enrichment for Research and Test Reactors program). Extensive irradiation tests have been conducted to find a solution for problems caused by interaction layer growth and pore formation between U-Mo and Al. Adding a small amount of Si (up to ~5 wt%) in the Al matrix was one of the proposed remedies. The effect of silicon addition in the Al matrix was examined using irradiation test results by comparing side-by-side samples with different Si additions. Interaction layer growth was progressively reduced with increasing Si addition to the matrix Al, up to 4.8 wt%. The Si addition also appeared to delay pore formation and growth between the U-Mo and Al.


Nuclear Engineering and Technology | 2014

SCANNING ELECTRON MICROSCOPY ANALYSIS OF FUEL/MATRIX INTERACTION LAYERS IN HIGHLY-IRRADIATED U-Mo DISPERSION FUEL PLATES WITH Al AND Al–Si ALLOY MATRICES

Dennis D. Keiser; Jan-Fong Jue; B.D. Miller; Jian Gan; A.B. Robinson; Pavel Medvedev; James W. Madden; D.M. Wachs; Mitch Meyer

In order to investigate how the microstructure of fuel/matrix-interaction (FMI) layers change during irradiation, different U?7Mo dispersion fuel plates have been irradiated to high fission density and then characterized using scanning electron microscopy (SEM). Specifially, samples from irradiated U?7Mo dispersion fuel elements with pure Al, Al?2Si and AA4043 (~4.5 wt.%Si) matrices were SEM characterized using polished samples and samples that were prepared with a focused ion beam (FIB). Features not observable for the polished samples could be captured in SEM images taken of the FIB samples. For the Al matrix sample, a relatively large FMI layer develops, with enrichment of Xe at the FMI layer/Al matrix interface and evidence of debonding. Overall, a significant penetration of Si from the FMI layer into the U?7Mo fuel was observed for samples with Si in the Al matrix, which resulted in a change of the size (larger) and shape (round) of the fission gas bubbles. Additionally, solid fission product phases were observed to nucleate and grow within these bubbles. These changes in the localized regions of the microstructure of the U?7Mo may contribute to changes observed in the macroscopic swelling of fuel plates with Al?Si matrices.


Journal of Radioanalytical and Nuclear Chemistry | 2016

Sparse-view neutron CT reconstruction of irradiated fuel assembly using total variation minimization with Poisson statistics

Muhammad Abir; Fahima Islam; D.M. Wachs; Hyoung-Koo Lee

Abstract We inspect the nuclear fuel assembly by demonstrating the potential use of sparse-view neutron computed tomography. The projection images of the fuel assembly were collected at the Idaho National Laboratory hot fuel examination facility using indirect foil-film transfer technique. The radiographs were digitized using a commercial film digitizer and registered spatially for reconstruction. Digitized data were reconstructed using simultaneous algebraic reconstruction technique (SART) with total variation minimization using a dual approach for numerical solution assuming the projection data are corrupted by Poisson noise. To validate and evaluate the performance of the algorithm, visual inspections, as well as quantitative evaluation studies using a computer simulation data and the experimental data of the fuel assembly were carried out. The proposed method provides better reconstruction for both simulated and experimental case in terms of artifact reduction, higher SNR, and better spatial resolution compared to the reconstruction yielded by filtered back projection and SART reconstruction.


Archive | 2011

AFIP-1 Irradiation Summary Report

Danielle M Perez; Misti A. Lillo; Gray S. Chang; G. A. Roth; N. E. Woolstenhulme; D.M. Wachs

The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-1 was designed to demonstrate the performance of second-generation dispersion fuels at a prototypic scale with a length of 21.5 inches (54.6 cm), width of 2.25 inches (5.75 cm) and a thickness of 0.050 inch (0.13 cm). The experiment was fabricated using commercially standard practices at BWX Technology, Inc. (BWXT). The U-7Mo fuel particles were supplied by the Korean Atomic Energy Research Institute (KAERI) using equipment intended for commercial supply. Two fuel plates were tested that incorporated two different matrix compositions, Al-2Si and Al-4043.1 The following report summarizes the life of the AFIP-1 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results


Journal of Instrumentation | 2016

Determination of optimal imaging parameters for the reconstruction of a nuclear fuel assembly using limited angle neutron tomography

Muhammad Abir; Fahima Islam; A. Craft; Walter J. Williams; D.M. Wachs; D.L. Chichester; M.K. Meyer; Hyoung-Koo Lee

The core components of nuclear reactors (e.g., fuel assemblies, spacer grids, control rods) encounter harsh environments due to high temperature, physical stress, and a tremendous level of radiation. The integrity of these elements is crucial for safe operation of nuclear power plants; post-irradiation examination (PIE) can reveal information about the integrity of these components. Neutron computed tomography (CT) is one important PIE measurement tool for nondestructively evaluating the structural integrity of these items. CT typically requires many projections to be acquired from different view angles, after which a mathematical algorithm is used for image reconstruction. However, when working with heavily irradiated materials and irradiated nuclear fuel, obtaining many projections is laborious and expensive. Image reconstruction from a smaller number of projections has been explored to achieve faster and more cost-efficient PIE. Classical reconstruction methods (e.g., filtered backprojection), unfortunately, do not typically offer stable reconstructions from a highly asymmetric, few-projection data set and often create severe streaking artifacts. We propose an iterative reconstruction technique to reconstruct curved, plate-type nuclear fuel assemblies using limited-angle CT. The performance of the proposed method is assessed using simulated data and validated through real projections. We also discuss the systematic strategy for establishing the conditions of reconstructions and finding the optimal imaging parameters for reconstructions of the fuel assemblies from few projections using limited-angle CT. Results show that a fuel assembly can be reconstructed using limited-angle CT if 36 or more projections are taken from a particular direction with 1° angular increment.


Archive | 2012

AFIP-3 Irradiation Summary Report

Danielle M Perez; Misti A. Lillo; Gray S. Chang; G. A. Roth; N. E. Woolstenhulme; D.M. Wachs

The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-3 was designed to evaluate the performance of monolithic fuels at a prototypic scale of 2.25 inches x 21.5 inches x 0.050 inches (5.75 cm x 54.6 cm x 0.13cm). The AFIP-3 experiment was fabricated by hot isostatic pressing (HIP) and consists of two plates, one with a zirconium (Zr) diffusion barrier and one with a silicon (Si) enhanced fuel/clad interface1,2. The following report summarizes the life of the AFIP-3 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.


Archive | 2011

AFIP-6 Irradiation Summary Report

Danielle M Perez; Misti A. Lillo; Gray S. Chang; G. A. Roth; N. E. Woolstenhulme; D.M. Wachs

The Advanced Test Reactor (ATR) Full size plate In center flux trap Position (AFIP) experiment AFIP-6 was designed to evaluate the performance of monolithic uranium-molybdenum (U-Mo) fuels at a length prototypic to that of the ATR fuel plates (45 inches in length). The AFIP-6 test was the first test with plates in a swaged condition with longer fuel zones of approximately 22.5 inches in length1,2. The following report summarizes the life of the AFIP-6 experiment through end of irradiation, including a brief description of the safety analysis, as-run neutronic analysis results, hydraulic testing results, and thermal analysis results.


Nuclear Technology | 2008

EBR-II Superheater Duplex Tube Examination

D.M. Wachs; Dennis D. Keiser; D.L. Porter; Naoyuki Kisohara

Abstract After 30 yr of operation, the Experimental Breeder Reactor II (EBR-II) Superheater 710 at Argonne National Laboratory-West (now Idaho National Laboratory) was decommissioned. As part of its postservice examination, four duplex tube sections were removed and Charpy impact testing was performed to characterize the crack-arresting ability of nickel-bonded tube interfaces. A scanning electron microscopy (SEM) examination was also performed to characterize and identify changes in bond material microstructure. From room temperature to 400°C, all samples demonstrated ductility and crack-stopping ability similar to that exhibited by beginning-of-life samples. However, at a low temperature (–50°C), samples removed from the lower region of the superheater (near the sodium inlet) failed while those from the upper region (near the sodium outlet) did not. SEM analysis revealed that all the tube-tube interfaces showed evidence of iron diffusion into the nickel braze, which resulted in the formation of a multiphase diffusion structure. Yet, significant void formation was only observed in the bond layer of the tubes removed from the lower region. This may be due to a change in the crystal microstructure of one of the phases within the bond layer that occurs in the 350 to 450°C temperature range, which results in a lower density and the formation of porosity. Apparently, only the samples from the higher-temperature region were exposed to this transition temperature, and the resulting large voids that developed acted as stress concentrators that led to low-temperature embrittlement and failure of the Charpy impact specimens.

Collaboration


Dive into the D.M. Wachs's collaboration.

Top Co-Authors

Avatar

A.B. Robinson

Idaho National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Gan

Idaho National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Pavel Medvedev

Idaho National Laboratory

View shared research outputs
Top Co-Authors

Avatar

B.D. Miller

Idaho National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jan-Fong Jue

Idaho National Laboratory

View shared research outputs
Top Co-Authors

Avatar

G.L. Hofman

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Yeon Soo Kim

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

James W. Madden

Idaho National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Misti A. Lillo

Idaho National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge