D. Manreza Paret
University of Havana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Manreza Paret.
European Physical Journal A | 2011
R. Gonzalez Felipe; D. Manreza Paret; A. Pérez Martínez
Abstract.The stability of the color flavor locked phase in the presence of a strong magnetic field is investigated within the phenomenological MIT bag model, taking into account the variation of the strange quark mass, the baryon density, the magnetic field, as well as the bag and gap parameters. It is found that the minimum value of the energy per baryon in a color flavor locked state at vanishing pressure is lower than the corresponding one for unpaired magnetized strange quark matter and, as the magnetic field increases, the energy per baryon decreases. This implies that magnetized color flavor locked matter is more stable and could become the ground state inside neutron stars. The mass-radius relation for such stars is also studied.The stability of the color flavor locked phase in the presence of a strong magnetic field is investigated within the phenomenological MIT bag model, taking into account the variation of the strange quark mass, the baryon density, the magnetic field, as well as the bag and gap parameters. It is found that the minimum value of the energy per baryon in a color flavor locked state at vanishing pressure is lower than the corresponding one for unpaired magnetized strange quark matter and, as the magnetic field increases, the energy per baryon decreases. This implies that magnetized color flavor locked matter is more stable and could become the ground state inside neutron stars. The mass-radius relation for such stars is also studied.
Physical Review D | 2015
Elisabet Ferrer; V. de la Incera; D. Manreza Paret; A. Pérez Martínez; A. Sanchez
We investigate the effects of the anomalous magnetic moment (AMM) in the equation of state (EoS) of a system of charged fermions at finite density in the presence of a magnetic field. In the region of strong magnetic fields (eB>m^2) the AMM is found from the one-loop fermion self-energy. In contrast to the weak-field AMM found by Schwinger, in the strong magnetic field region the AMM depends on the Landau level and decreases with it. The effects of the AMM in the EoS of a dense medium are investigated at strong and weak fields using the appropriate AMM expression for each case. In contrast with what has been reported in other works, we find that the AMM of charged fermions makes no significant contribution to the EoS at any field value.
Journal of Cosmology and Astroparticle Physics | 2010
D. Manreza Paret; A. Pérez Martínez; A. Ulacia Rey; Roberto A. Sussman
We examine the dynamics of a self-gravitating magnetized neutron gas as a source of a Bianchi I spacetime described by the Kasner metric. The set of Einstein-Maxwell field equations can be expressed as a dynamical system in a 4-dimensional phase space. Numerical solutions of this system reveal the emergence of a point-like singularity as the final evolution state for a large class of physically motivated initial conditions. Besides the theoretical interest of studying this source in a fully general relativistic context, the resulting idealized model could be helpful in understanding the collapse of local volume elements of a neutron gas in the critical conditions that would prevail in the center of a compact object.
Journal of Physics G | 2012
R. Gonzalez Felipe; E. Lopez Fune; D. Manreza Paret; A. Pérez Martínez
The main properties of strangelets, namely their energy per baryon, radius and electric charge, are studied in the unpaired magnetized strange quark matter (MSQM) and paired magnetized colour flavour locked (MCFL) phases. Temperature effects are taken into account in order to study their stability compared to the 56Fe isotope and nonmagnetized strangelets within the framework of the MIT bag model. We conclude that the presence of a magnetic field tends to stabilize the strangelets more, even when temperature is considered. It is also shown that MCFL strangelets are more stable than ordinary MSQM strangelets for typical gap values of the order of MeV. A distinctive feature in the detection of strangelets either in cosmic rays or in heavy-ion collider experiments could be their electric charge. We find that the electric charge is modified in the presence of the magnetic field, leading to higher (lower) charge values for MSQM (MCFL) strangelets, when compared to the nonmagnetized case.
International Journal of Modern Physics D | 2018
D. Alvear Terrero; D. Manreza Paret; A. Pérez Martínez
In this work we use Hartle’s formalism to study the effects of rotation in the structure of magnetized white dwarfs within the framework of general relativity. We describe the inner matter by means of an equation of state for electrons under the action of a constant magnetic field, which introduces an anisotropy in the pressures. Solutions correspond to typical densities of white dwarfs and values of magnetic field below 1013G considering perpendicular and parallel pressures independently, as if associated to two different equations of state. Rotation effects obtained account for an increase of the maximum mass for both magnetized and nonmagnetized stable configurations, up to about 1.5M⊙. Further effects studied include the deformation of the stars, which become oblate spheroids and the solutions for other quantities of interest, such as the moment of inertia, quadrupolar momentum and eccentricity. In all cases, rotation effects are dominant with respect to those of the magnetic field.
Astronomische Nachrichten | 2014
D. Manreza Paret; A. Pérez Martínez; Efrain J. Ferrer; V. de la Incera
We investigate the effects of the anomalous magnetic moment (AMM) in the EoS of a fermion system in the presence of a magnetic field. In the region of strong magnetic fields (B > m2) the AMM is found from the one-loop fermion selfenergy. In contrast to the weak-field AMM found by Schwinger, in the strong magnetic field case, the AMM depends on the Landau level (LL) and decreases with it. The effects of the AMM in the EoS at intermediate-to-large fields can be found introducing the one-loop, LL-dependent AMM in the effective Lagrangian that is then used to find the thermodynamical potential of the system. We compare the plots of the parallel and perpendicular pressures versus the magnetic field in the strong field region considering the LL-dependent AMM, the Schwinger AMM, and no AMM at all. The results clearly show a separation between the physical magnitudes found using the Schwinger AMM and the LL-dependent AMM. This is an indication of the inconsistency of considering the Schwinger AMM beyond the weak field region B < m2 where it was originally found. The curves for the EoS, pressures and magnetization at different fields give rise to the well-known de Haas van Alphen oscillations, associated to the change in the number of LL contributing at different fields. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
European Physical Journal C | 2016
R. Gonzalez Felipe; D. Manreza Paret; A. Pérez Martínez
According to the braneworld idea, ordinary matter is confined on a three-dimensional space (brane) that is embedded in a higher-dimensional space-time where gravity propagates. In this work, after reviewing the limits coming from general relativity, finiteness of pressure and causality on the brane, we derive observational constraints on the braneworld parameters from the existence of stable compact stars. The analysis is carried out by solving numerically the brane-modified Tolman–Oppenheimer–Volkoff equations, using different representative equations of state to describe matter in the star interior. The cases of normal dense matter, pure quark matter and hybrid matter are considered.
arXiv: High Energy Astrophysical Phenomena | 2014
D. Manreza Paret; J. E. Horvath
Astronomische Nachrichten | 2015
D. Alvear Terrero; M. Castillo García; D. Manreza Paret; J. E. Horvath; A. Pérez Martínez
arXiv: Nuclear Theory | 2013
Elisabet Ferrer; V. de la Incera; D. Manreza Paret; A. Pérez Martínez