D. Martin Watterson
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Martin Watterson.
Journal of Clinical Investigation | 2005
Daniel R. Clayburgh; Terrence A. Barrett; Yueming Tang; Jon Meddings; Linda J. Van Eldik; D. Martin Watterson; Lane L. Clarke; Randall J. Mrsny; Jerrold R. Turner
Disruption of the intestinal epithelial barrier occurs in many intestinal diseases, but neither the mechanisms nor the contribution of barrier dysfunction to disease pathogenesis have been defined. We utilized a murine model of T cell-mediated acute diarrhea to investigate the role of the epithelial barrier in diarrheal disease. We show that epithelial barrier dysfunction is required for the development of diarrhea. This diarrhea is characterized by reversal of net water flux, from absorption to secretion; increased leak of serum protein into the intestinal lumen; and altered tight junction structure. Phosphorylation of epithelial myosin II regulatory light chain (MLC), which has been correlated with tight junction regulation in vitro, increased abruptly after T cell activation and coincided with the development of diarrhea. Genetic knockout of long myosin light chain kinase (MLCK) or treatment of wild-type mice with a highly specific peptide MLCK inhibitor prevented epithelial MLC phosphorylation, tight junction disruption, protein leak, and diarrhea following T cell activation. These data show that epithelial MLCK is essential for intestinal barrier dysfunction and that this barrier dysfunction is critical to pathogenesis of diarrheal disease. The data also indicate that inhibition of epithelial MLCK may be an effective non-immunosuppressive therapy for treatment of immune-mediated intestinal disease.
Journal of Neuroinflammation | 2007
Lenka Munoz; Hantamalala Ralay Ranaivo; Saktimayee M. Roy; Wenhui Hu; Jeffrey M. Craft; Laurie K. McNamara; Laura Wing Chico; Linda J. Van Eldik; D. Martin Watterson
BackgroundAn accumulating body of evidence is consistent with the hypothesis that excessive or prolonged increases in proinflammatory cytokine production by activated glia is a contributor to the progression of pathophysiology that is causally linked to synaptic dysfunction and hippocampal behavior deficits in neurodegenerative diseases such as Alzheimers disease (AD). This raises the opportunity for the development of new classes of potentially disease-modifying therapeutics. A logical candidate CNS target is p38α MAPK, a well-established drug discovery molecular target for altering proinflammatory cytokine cascades in peripheral tissue disorders. Activated p38 MAPK is seen in human AD brain tissue and in AD-relevant animal models, and cell culture studies strongly implicate p38 MAPK in the increased production of proinflammatory cytokines by glia activated with human amyloid-beta (Aβ) and other disease-relevant stressors. However, the vast majority of small molecule drugs do not have sufficient penetrance of the blood-brain barrier to allow their use as in vivo research tools or as therapeutics for neurodegenerative disorders. The goal of this study was to test the hypothesis that brain p38α MAPK is a potential in vivo target for orally bioavailable, small molecules capable of suppressing excessive cytokine production by activated glia back towards homeostasis, allowing an improvement in neurologic outcomes.MethodsA novel synthetic small molecule based on a molecular scaffold used previously was designed, synthesized, and subjected to analyses to demonstrate its potential in vivo bioavailability, metabolic stability, safety and brain uptake. Testing for in vivo efficacy used an AD-relevant mouse model.ResultsA novel, CNS-penetrant, non-toxic, orally bioavailable, small molecule inhibitor of p38α MAPK (MW01-2-069A-SRM) was developed. Oral administration of the compound at a low dose (2.5 mg/kg) resulted in attenuation of excessive proinflammatory cytokine production in the hippocampus back towards normal in the animal model. Animals with attenuated cytokine production had reductions in synaptic dysfunction and hippocampus-dependent behavioral deficits.ConclusionThe p38α MAPK pathway is quantitatively important in the Aβ-induced production of proinflammatory cytokines in hippocampus, and brain p38α MAPK is a viable molecular target for future development of potential disease-modifying therapeutics in AD and related neurodegenerative disorders.
Nature Reviews Drug Discovery | 2009
Laura K. Chico; Linda J. Van Eldik; D. Martin Watterson
Protein kinases are a growing drug target class in disorders in peripheral tissues, but the development of kinase-targeted therapies for central nervous system (CNS) diseases remains a challenge, largely owing to issues associated specifically with CNS drug discovery. However, several candidate therapeutics that target CNS protein kinases are now in various stages of preclinical and clinical development. We review candidate compounds and discuss selected CNS protein kinases that are emerging as important therapeutic targets. In addition, we analyse trends in small-molecule properties that correlate with key challenges in CNS drug discovery, such as blood–brain barrier penetrance and cytochrome P450-mediated metabolism, and discuss the potential of future approaches that will integrate molecular-fragment expansion with pharmacoinformatics to address these challenges.
The Journal of Neuroscience | 2006
Hantamalala Ralay Ranaivo; Jeffrey M. Craft; Wenhui Hu; Ling Guo; Laura K. Wing; Linda J. Van Eldik; D. Martin Watterson
A corollary of the neuroinflammation hypothesis is that selective suppression of neurotoxic products produced by excessive glial activation will result in neuroprotection. We report here that daily oral administration to mice of the brain-penetrant compound 4,6-diphenyl-3-(4-(pyrimidin-2-yl)piperazin-1-yl)pyridazine (MW01-5-188WH), a selective inhibitor of proinflammatory cytokine production by activated glia, suppressed the human amyloid-β (Aβ) 1-42-induced upregulation of interleukin-1β, tumor necrosis factor-α, and S100B in the hippocampus. Suppression of neuroinflammation was accompanied by restoration of hippocampal synaptic dysfunction markers synaptophysin and postsynaptic density-95 back toward control levels. Consistent with the neuropathophysiological improvements, MW01-5-188WH therapy attenuated deficits in Y maze behavior, a hippocampal-linked task. Oral MW01-5-188WH therapy begun 3 weeks after initiation of intracerebroventricular infusion of human Aβ decreased the numbers of activated astrocytes and microglia and the cytokine levels in the hippocampus without modifying amyloid plaque burden or altering peripheral tissue cytokine upregulation in response to an in vivo inflammatory challenge. The results provide a novel integrative chemical biology proof in support of the neuroinflammation hypothesis of disease progression, demonstrate that neurodegeneration can be attenuated independently of plaque modulation by targeting innate brain proinflammatory cytokine responses, and indicate the feasibility of developing efficacious, safe, and selective therapies for neurodegenerative disorders by targeting key glial activation pathways.
Journal of Neuroinflammation | 2008
Eric Lloyd; Kathleen C. Somera-Molina; Linda J. Van Eldik; D. Martin Watterson; Mark S. Wainwright
BackgroundTraumatic brain injury (TBI) with its associated morbidity is a major area of unmet medical need that lacks effective therapies. TBI initiates a neuroinflammatory cascade characterized by activation of astrocytes and microglia, and increased production of immune mediators including proinflammatory cytokines and chemokines. This inflammatory response contributes both to the acute pathologic processes following TBI including cerebral edema, in addition to longer-term neuronal damage and cognitive impairment. However, activated glia also play a neuroprotective and reparative role in recovery from injury. Thus, potential therapeutic strategies targeting the neuroinflammatory cascade must use careful dosing considerations, such as amount of drug and timing of administration post injury, in order not to interfere with the reparative contribution of activated glia.MethodsWe tested the hypothesis that attenuation of the acute increase in proinflammatory cytokines and chemokines following TBI would decrease neurologic injury and improve functional neurologic outcome. We used the small molecule experimental therapeutic, Minozac (Mzc), to suppress TBI-induced up-regulation of glial activation and proinflammatory cytokines back towards basal levels. Mzc was administered in a clinically relevant time window post-injury in a murine closed-skull, cortical impact model of TBI. Mzc effects on the acute increase in brain cytokine and chemokine levels were measured as well as the effect on neuronal injury and neurobehavioral function.ResultsAdministration of Mzc (5 mg/kg) at 3 h and 9 h post-TBI attenuates the acute increase in proinflammatory cytokine and chemokine levels, reduces astrocyte activation, and the longer term neurologic injury, and neurobehavioral deficits measured by Y maze performance over a 28-day recovery period. Mzc-treated animals also have no significant increase in brain water content (edema), a major cause of the neurologic morbidity associated with TBI.ConclusionThese results support the hypothesis that proinflammatory cytokines contribute to a glial activation cycle that produces neuronal dysfunction or injury following TBI. The improvement in long-term functional neurologic outcome following suppression of cytokine upregulation in a clinically relevant therapeutic window indicates that selective targeting of neuroinflammation may lead to novel therapies for the major neurologic morbidities resulting from head injury, and indicates the potential of Mzc as a future therapeutic for TBI.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Mark S. Wainwright; Janet L. Rossi; James P. Schavocky; Susan E. Crawford; David M. Steinhorn; Anastasia Velentza; Vladimir P. Shirinsky; Yuzhi Jia; Jacques Haiech; Linda J. Van Eldik; D. Martin Watterson
Acute lung injury (ALI) associated with sepsis and iatrogenic ventilator-induced lung injury resulting from mechanical ventilation are major medical problems with an unmet need for small molecule therapeutics. Prevailing hypotheses identify endothelial cell (EC) layer dysfunction as a cardinal event in the pathophysiology, with intracellular protein kinases as critical mediators of normal physiology and possible targets for drug discovery. The 210,000 molecular weight myosin light chain kinase (MLCK210, also called EC MLCK because of its abundance in EC) is hypothesized to be important for EC barrier function and might be a potential therapeutic target. To test these hypotheses directly, we made a selective MLCK210 knockout mouse that retains production of MLCK108 (also called smooth-muscle MLCK) from the same gene. The MLCK210 knockout mice are less susceptible to ALI induced by i.p. injection of the endotoxin lipopolysaccharide and show enhanced survival during subsequent mechanical ventilation. Using a complementary chemical biology approach, we developed a new class of small-molecule MLCK inhibitor based on the pharmacologically privileged aminopyridazine and found that a single i.p. injection of the inhibitor protected WT mice against ALI and death from mechanical ventilation complications. These convergent results from two independent approaches demonstrate a pivotal in vivo role for MLCK in susceptibility to lung injury and validate MLCK as a potential drug discovery target for lung injury.
International Review of Neurobiology | 2007
Linda J. Van Eldik; Wendy L. Thompson; Hantamalala Ralay Ranaivo; Heather A. Behanna; D. Martin Watterson
Inflammation is the bodys defense mechanism against threats such as bacterial infection, undesirable substances, injury, or illness. The process is complex and involves a variety of specialized cells that mobilize to neutralize and dispose of the injurious material so that the body can heal. In the brain, a similar inflammation process occurs when glia, especially astrocytes and microglia, undergo activation in response to stimuli such as injury, illness, or infection. Like peripheral immune cells, glia in the central nervous system also increase production of inflammatory cytokines and neutralize the threat to the brain. This brain inflammation, or neuroinflammation, is generally beneficial and allows the brain to respond to changes in its environment and dispose of damaged tissue or undesirable substances. Unfortunately, this beneficial process sometimes gets out of balance and the neuroinflammatory process persists, even when the inflammation-provoking stimulus is eliminated. Uncontrolled chronic neuroinflammation is now known to play a key role in the progression of damage in a number of neurodegenerative diseases. Thus, overproduction of proinflammatory cytokines offers a pathophysiology progression mechanism that can be targeted in new therapeutic development for multiple neurodegenerative diseases. We summarize in this chapter the evidence supporting proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative disorders, with a focus on Alzheimers disease. In addition, we discuss the drug discovery process and two approaches, function-driven and target-based, that show promise for development of neuroinflammation-targeted, disease-modifying therapeutics for multiple neurodegenerative disorders.
Journal of Neuroinflammation | 2011
Adam D. Bachstetter; Bin Xing; Lúcia Maria Vieira de Almeida; Edgardo Dimayuga; D. Martin Watterson; Linda J. Van Eldik
BackgroundOverproduction of proinflammatory cytokines from activated microglia has been implicated as an important contributor to pathophysiology progression in both acute and chronic neurodegenerative diseases. Therefore, it is critical to elucidate intracellular signaling pathways that are significant contributors to cytokine overproduction in microglia exposed to specific stressors, especially pathways amenable to drug interventions. The serine/threonine protein kinase p38α MAPK is a key enzyme in the parallel and convergent intracellular signaling pathways involved in stressor-induced production of IL-1β and TNFα in peripheral tissues, and is a drug development target for peripheral inflammatory diseases. However, much less is known about the quantitative importance of microglial p38α MAPK in stressor-induced cytokine overproduction, or the potential of microglial p38α MAPK to be a druggable target for CNS disorders. Therefore, we examined the contribution of microglial p38αMAPK to cytokine up-regulation, with a focus on the potential to suppress the cytokine increase by inhibition of the kinase with pharmacological or genetic approaches.MethodsThe microglial cytokine response to TLR ligands 2/3/4/7/8/9 or to Aβ1-42 was tested in the presence of a CNS-penetrant p38α MAPK inhibitor, MW01-2-069A-SRM. Primary microglia from mice genetically deficient in p38α MAPK were used to further establish a linkage between microglia p38α MAPK and cytokine overproduction. The in vivo significance was determined by p38α MAPK inhibitor treatment in a LPS-induced model of acute neuroinflammation.ResultsIncreased IL-1β and TNFα production by the BV-2 microglial cell line and by primary microglia cultures was inhibited in a concentration-dependent manner by the p38α MAPK-targeted inhibitor. Cellular target engagement was demonstrated by the accompanying decrease in the phosphorylation state of two p38α MAPK protein substrates, MK2 and MSK1. Consistent with the pharmacological findings, microglia from p38α-deficient mice showed a diminished cytokine response to LPS. Further, oral administration of the inhibitor blocked the increase of IL-1β in the cerebral cortex of mice stressed by intraperitoneal injection of LPS.ConclusionThe p38α MAPK pathway is an important contributor to the increased microglial production of proinflammatory cytokines induced by diverse stressors. The results also indicate the feasibility of targeting p38α MAPK to modulate CNS proinflammatory cytokine overproduction.
Epilepsia | 2007
Kathleen C. Somera-Molina; Beverley Robin; Cherie Ann Somera; Christopher D. Anderson; Christy D. Stine; Sookyoung Koh; Heather A. Behanna; Linda J. Van Eldik; D. Martin Watterson; Mark S. Wainwright
Summary: Purpose: Early‐life seizures increase vulnerability to subsequent neurologic insult. We tested the hypothesis that early‐life seizures increase susceptibility to later neurologic injury by causing chronic glial activation. To determine the mechanisms by which glial activation may modulate neurologic injury, we examined both acute changes in proinflammatory cytokines and long‐term changes in astrocyte and microglial activation and astrocyte glutamate transporters in a “two‐hit” model of kainic acid (KA)‐induced seizures.
Neurobiology of Aging | 2001
Amy G.M Lam; Tanuja Koppal; Keith T. Akama; Ling Guo; Jeffrey M. Craft; Barat Samy; James P. Schavocky; D. Martin Watterson; Linda J. Van Eldik
Compelling evidence links chronic activation of glia and the subsequent cycle of neuroinflammation and neuronal dysfunction to the progression of neurodegeneration in disorders such as Alzheimers disease (AD). S100B, a glial-derived cytokine, is significantly elevated in the brains of AD patients and high concentrations of S100B are believed to be detrimental to brain function. As a first step toward elucidating the mechanisms by which S100B might be serving this detrimental role, we examined the mechanisms by which S100B stimulates glial inducible nitric oxide synthase (iNOS), an oxidative stress related enzyme that has been linked to neuropathology through the production of neurotoxic peroxynitrite. We report here that S100B stimulates iNOS in rat primary cortical astrocytes through a signal transduction pathway that involves activation of the transcription factor NFkappaB. NFkappaB activation was demonstrated by nuclear translocation of the p65 NFkappaB subunit, stimulation of NFkappaB-specific DNA binding activity, and stimulation of NFkappaB-dependent transcriptional activity. Furthermore, S100B-induced iNOS promoter activation was inhibited upon mutation of the NFkappaB response element in the promoter, and transfection of cells with an NFkappaB inhibitor blocked S100B-induced iNOS promoter activation and nitric oxide production. These studies define a signal transduction pathway by which S100B activation of glia could participate in the generation of oxidative stress in the brain.