Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Mascali is active.

Publication


Featured researches published by D. Mascali.


Review of Scientific Instruments | 2008

Observations of the frequency tuning effect in the 14 GHz CAPRICE ion source

L. Celona; G. Ciavola; Fabrizio Consoli; S. Gammino; F. Maimone; D. Mascali; P. Spädtke; K. Tinschert; R. Lang; J. Mäder; J. Roßbach; S. Barbarino; R. S. Catalano

A set of measurements with the CAPRICE ion source at the GSI test bench has been carried out to investigate its behavior in terms of intensity and shape of the extracted beam when the microwaves generating the plasma sweep in a narrow range of frequency (+/-40 MHz) around the klystron center frequency (14.5 GHz). Remarkable variations have been observed depending on the source and the beamline operating parameters, confirming that a frequency dependent electromagnetic distribution is preserved even in the presence of plasma inside the source. Moreover, these observations confirm that the frequency tuning is a powerful method to optimize the electron cyclotron resonance ion source performances. A description of the experimental setup and of the obtained results is given in the following.


Review of Scientific Instruments | 2010

Review on high current 2.45 GHz electron cyclotron resonance sources (invited)

S. Gammino; L. Celona; G. Ciavola; F. Maimone; D. Mascali

The suitable source for the production of intense beams for high power accelerators must obey to the request of high brightness, stability, and reliability. The 2.45 GHz off-resonance microwave discharge sources are the ideal device to generate the requested beams, as they produce multimilliampere beams of protons, deuterons, and monocharged ions, remaining stable for several weeks without maintenance. A description of different technical designs will be given, analyzing their strength, and weakness, with regard to the extraction system and low energy beam transport line, as the presence of beam halo is detrimental for the accelerator.


Analytical Chemistry | 2014

Macro and Micro Full Field X-Ray Fluorescence with an X-Ray Pinhole Camera Presenting High Energy and High Spatial Resolution

F. Romano; Claudia Caliri; Luigi Cosentino; S. Gammino; L. Giuntini; D. Mascali; Lorenzo Neri; Lighea Pappalardo; F. Rizzo; F. Taccetti

This work describes a tabletop (50 cm × 25 cm × 25 cm) full field X-ray pinhole camera (FF-XPC) presenting high energy- and high spatial-resolution. The FF-XPC consists of a conventional charge-coupled device (CCD) detector coupled, in a coaxial geometry, to a pinhole collimator of small diameter. The X-ray fluorescence (XRF) is induced on the samples with an external low-power X-ray tube. The use of the CCD as an energy dispersive X-ray detector was obtained by adopting a multi-image acquisition in single photon counting and by developing a processing algorithm to be applied in real-time to each of the acquired image-frames. This approach allowed the measurement of X-ray spectra with an energy resolution down to 133 eV at the reference value of 5.9 keV. The detection of the X-ray fluorescence through the pinhole-collimator allowed the two-dimensional elemental mapping of the irradiated samples. Two magnifications (M), determined by the relative sample-pinhole-CCD distances, are used in the present setup. A low value of M (equal to 0.35×) allows the macro-FF-XRF of large area samples (up to 4 × 4 cm(2)) with a spatial resolution down to 140 μm; a large magnification (M equal to 6×) is used for the micro-FF-XRF of small area samples (2.5 × 2.5 mm(2)) with a spatial resolution down to 30 μm.


Review of Scientific Instruments | 2006

Enhancement of ion current from the TRIPS source by means of different electron donors

S. Gammino; G. Ciavola; L. Celona; L. Torrisi; D. Mascali; S. Passarello; A. Galatà

A series of measurements were carried out with the TRasco Intense Proton Source (TRIPS) to determine the effectiveness of different materials as electron donors. It is well known that the use of boron nitride (BN) disks inside the plasma chamber increases the current extracted from microwave discharge ion sources, generating additional electrons. In the past, one of the two disks was replaced by a 40μm Al2O3 coating over the extraction electrode, which gave some increase of current, but after less than 200h was heavily damaged. The tests here reported concern three different options: (a) thicker Al2O3 layer (100μm) deposited over the extraction electrode; a 1-mm-thick aluminium foil over which an alumina layer is deposited, inserted in the plasma chamber; a 5-mm-thick Al2O3 tube embedded in the plasma chamber of the TRIPS source (the outer diameter of the tube being slightly smaller than the inner diameter of the chamber). The tests were carried out in the same conditions as for magnetic field topology an...


Review of Scientific Instruments | 2010

Microwave to plasma coupling in electron cyclotron resonance and microwave ion sources (invited).

L. Celona; S. Gammino; G. Ciavola; F. Maimone; D. Mascali

Coupling improvements between microwaves and plasmas are a key factor to design more powerful electron cyclotron resonance and microwave ion sources. On this purpose different activities have been undertaken by the INFN-LNS ion source team and a new approach was developed. Recent experiments confirmed the simulations, demonstrating that even in presence of a dense plasma, resonant modes are excited inside the cavity and the plasma dynamics depends on their structure. An overview of the coupling issues on microwave ion sources is also given along with a discussion on alternative coupling techniques.


Review of Scientific Instruments | 2008

Microwave field distribution and electron cyclotron resonance heating process.

Fabrizio Consoli; L. Celona; G. Ciavola; S. Gammino; F. Maimone; S. Barbarino; R. S. Catalano; D. Mascali

In an electron cyclotron resonance ion source, ions are produced from a plasma generated and sustained by microwaves with a proper frequency. Some experiments showed that the plasma formation, the consequent amount of particles extracted from the source, and the related beam shape strongly depend on the frequency of the electromagnetic wave feeding the cavity. In order to have a better understanding of these phenomena, in this work we deal with the description of the motion of a charged particle inside the plasma chamber model of the SERSE ion source operating at INFN-LNS in Catania, the analysis being applicable to any similar apparatus. The electromagnetic fields inside the vacuum filled chamber were determined theoretically and, together with proper simulations, their fundamental role on the particle motion, on their confinement, and on the energy transfer they are subjected to during their motion within the cavity is shown.


Review of Scientific Instruments | 2012

Towards a better comprehension of plasma formation and heating in high performances electron cyclotron resonance ion sources (invited).

D. Mascali; S. Gammino; L. Celona; G. Ciavola

Further improvements of electron cyclotron resonance ion sources (ECRIS) output currents and average charge state require a deep understanding of electron and ion dynamics in the plasma. This paper will discuss the most recent advances about modeling of non-classical evidences like the sensitivity of electron energy distribution function to the magnetic field detuning, the influence of plasma turbulences on electron heating and ion confinement, the coupling between electron and ion dynamics. All these issues have in common the non-homogeneous distribution of the plasma inside the source: the abrupt density drop at the resonance layer regulates the heating regimes (from collective to turbulent), the beam formation mechanism and emittance. Possible means to boost the performances of future ECRIS will be proposed. In particular, the use of Bernstein waves, in preliminary experiments performed at Laboratori Nazionali del Sud (LNS) on MDIS (microwave discharge ion sources)-type sources, has permitted to sustain largely overdense plasmas enhancing the warm electron temperature, which will make possible in principle the construction of sources for high intensity multicharged ions beams with simplified magnetic structures.


Review of Scientific Instruments | 2010

Effect of electron cyclotron resonance ion source frequency tuning on ion beam intensity and quality at Department of Physics, University of Jyväskylä

V. Toivanen; H. Koivisto; O. Steczkiewicz; L. Celona; Olli Tarvainen; T. Ropponen; S. Gammino; D. Mascali; G. Ciavola

Ion beam intensity and quality have a crucial effect on the operation efficiency of the accelerator facilities. This paper presents the investigations on the ion beam intensity and quality after the mass separation performed with the Department of Physics, University of Jyväskylä 14 GHz electron cyclotron resonance ion source by sweeping the microwave in the 14.05-14.13 GHz range. In many cases a clear variation in the ion beam intensity and quality as a function of the frequency was observed. The effect of frequency tuning increased with the charge state. In addition, clear changes in the beam structure seen with the beam viewer were observed. The results confirmed that frequency tuning can have a remarkable effect on ion beam intensity and quality especially in the case of highly charged ion beams. The examples presented here represent the typical charge state behavior observed during the measurements.


Review of Scientific Instruments | 2012

Characterization of the versatile ion source and possible applications as injector for future projects

R. Miracoli; L. Celona; G. Castro; D. Mascali; S. Gammino; D. Lanaia; R. Di Giugno; T. Serafino; G. Ciavola

The versatile ion source (VIS) is an off-resonance microwave discharge ion source which generates a slightly overdense plasma (n(e) ≈ 10(17) cm(-3)) operating at 2.45 GHz and producing more than 50 mA of proton beams. A detailed characterization of the source, by operating between 60 and 75 kV, in terms of emittance, current extracted and proton fraction is reported below. Moreover, passive techniques (alumina coating of the plasma chamber walls, BN disks at the injection and extraction endplates) have been used to improve the performance of the source, increasing the electron density for a more efficient ionization. The know-how achieved with the VIS source may be useful for the different project, particularly for the European spallation source.


Review of Scientific Instruments | 2012

Comparison between off-resonance and electron Bernstein waves heating regime in a microwave discharge ion source.

G. Castro; D. Mascali; Francesco Romano; L. Celona; S. Gammino; D. Lanaia; R. Di Giugno; R. Miracoli; T. Serafino; F. Di Bartolo; Nadia Gambino; G. Ciavola

A microwave discharge ion source (MDIS) operating at the Laboratori Nazionali del Sud of INFN, Catania has been used to compare the traditional electron cyclotron resonance (ECR) heating with an innovative mechanisms of plasma ignition based on the electrostatic Bernstein waves (EBW). EBW are obtained via the inner plasma electromagnetic-to-electrostatic wave conversion and they are absorbed by the plasma at cyclotron resonance harmonics. The heating of plasma by means of EBW at particular frequencies enabled us to reach densities much larger than the cutoff ones. Evidences of EBW generation and absorption together with X-ray emissions due to high energy electrons will be shown. A characterization of the discharge heating process in MDISs as a generalization of the ECR heating mechanism by means of ray tracing will be shown in order to highlight the fundamental physical differences between ECR and EBW heating.

Collaboration


Dive into the D. Mascali's collaboration.

Top Co-Authors

Avatar

S. Gammino

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

L. Celona

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

Lorenzo Neri

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

G. Ciavola

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

S. Tudisco

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Maimone

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

N. Gambino

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Miracoli

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Researchain Logo
Decentralizing Knowledge