D. Moira Glerum
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Moira Glerum.
Nature Genetics | 1999
Lefkothea C. Papadopoulou; Carolyn M. Sue; Mercy M. Davidson; Kurenai Tanji; Ichizo Nishino; James Sadlock; Sindu Krishna; Winsome F Walker; Jeanette Selby; D. Moira Glerum; Rudy Van Coster; Gilles Lyon; Emmanuel Scalais; Roger Lebel; Sara Shanske; Darryl C. De Vivo; Eduardo Bonilla; Michio Hirano; Salvatore DiMauro; Eric A. Schon
Mammalian cytochrome c oxidase (COX) catalyses the transfer of reducing equivalents from cytochrome c to molecular oxygen and pumps protons across the inner mitochondrial membrane. Mitochondrial DNA (mtDNA) encodes three COX subunits (I–III) and nuclear DNA (nDNA) encodes ten. In addition, ancillary proteins are required for the correct assembly and function of COX (refs 2, 3, 4, 5, 6). Although pathogenic mutations in mtDNA-encoded COX subunits have been described, no mutations in the nDNA-encoded subunits have been uncovered in any mendelian-inherited COX deficiency disorder. In yeast, two related COX assembly genes, SCO1 and SCO2 (for synthesis of cytochrome c oxidase), enable subunits I and II to be incorporated into the holoprotein. Here we have identified mutations in the human homologue, SCO2, in three unrelated infants with a newly recognized fatal cardioencephalomyopathy and COX deficiency. Immunohistochemical studies implied that the enzymatic deficiency, which was most severe in cardiac and skeletal muscle, was due to the loss of mtDNA-encoded COX subunits. The clinical phenotype caused by mutations in human SCO2 differs from that caused by mutations in SURF1, the only other known COX assembly gene associated with a human disease, Leigh syndrome.
American Journal of Human Genetics | 2003
Hana Antonicka; Andre Mattman; Christopher G. Carlson; D. Moira Glerum; Kristen C. Hoffbuhr; Scot C. Leary; Nancy G. Kennaway; Eric A. Shoubridge
Deficiencies in the activity of cytochrome c oxidase (COX), the terminal enzyme in the respiratory chain, are a frequent cause of autosomal recessive mitochondrial disease in infants. These patients are clinically and genetically heterogeneous, and all defects so far identified in this group have been found in genes coding for accessory proteins that play important roles in the assembly of the COX holoenzyme complex. Many patients, however, remain without a molecular diagnosis. We have used a panel of retroviral vectors expressing human COX assembly factors in these patients to identify the molecular basis for the COX deficiency by functional complementation. Here we show that overexpression of COX15, a protein involved in the synthesis of heme A, the heme prosthetic group for COX, can functionally complement the isolated COX deficiency in fibroblasts from a patient with fatal, infantile hypertrophic cardiomyopathy. Mutation analysis of COX15 in the patient identified a missense mutation (C700T) on one allele, changing a conserved arginine to tryptophan (R217W), and a splice-site mutation in intron 3 on the other allele (C447-3G), resulting in a deletion of exon 4. This splicing error introduces a frameshift and a premature stop codon, resulting in an unstable mRNA and, likely, a null allele. Mitochondrial heme A content was reduced in the patients heart and fibroblast mitochondria, and levels of heme O were increased in the patients heart. COX activity and the total amount of fully assembled enzyme were reduced by 50%-70% in patient fibroblasts. Expression of COX15 increased heme A content and rescued COX activity. These results suggest that reduced availability of heme A stalls the assembly of COX. This study establishes COX15 as an additional cause, along with SCO2, of fatal infantile, hypertrophic cardiomyopathy associated with isolated COX deficiency.
Human Genetics | 1997
Ravi K. Amaravadi; D. Moira Glerum; Alexander Tzagoloff
Abstract The COX17 gene of Saccharomyces cerevisiae codes for a cytoplasmic protein essential for the expression of functional cytochrome oxidase. This protein has been implicated in targeting copper to mitochondria. To determine if Cox17p is present in mammalian cells, a yeast strain carrying a null mutation in COX17 was transformed with a human cDNA expression library. All the respiratory competent clones obtained from the transformations carried a common cDNA sequence with a reading frame predicting a product homologous to yeast Cox17p. The cloning of a mammalian COX17 homolog suggests that the encoded product is likely to function in copper recruitment in eucaryotic cells in general. Its presence in humans provides a possible target for genetically inherited deficiencies in cytochrome oxidase.
FEBS Letters | 2001
Mario H. Barros; Christopher G. Carlson; D. Moira Glerum; Alexander Tzagoloff
Cox15p is essential for the biogenesis of cytochrome oxidase [Glerum et al., J. Biol. Chem. 272 (1997) 19088–19094]. We show here that cox15 mutants are blocked in heme A but not heme O biosynthesis. In Schizosaccharomyces pombe COX15 is fused to YAH1, the yeast gene for mitochondrial ferredoxin (adrenodoxin). A fusion of Cox15p and Yah1p in Saccharomyces cerevisiae rescued both cox15 and yah1 null mutants. This suggests that Yah1p functions in concert with Cox15p. We propose that Cox15p functions together with Yah1p and its putative reductase (Arh1p) in the hydroxylation of heme O.
Journal of Biological Chemistry | 2002
Scot C. Leary; Bruce C. Hill; Carrie N. Lyons; Christopher G. Carlson; Denise Michaud; Claudia S. Kraft; Kenton Ko; D. Moira Glerum; Christopher D. Moyes
Chronic treatment of cultured cells with very low levels of azide (I50<10 μm) leads to slow (t 1 2 = 6 h), irreversible loss of cytochrome c oxidase (COX) activity. Azide-mediated COX losses were not accompanied by inhibition of other mitochondrial enzymes and were not dependent upon electron flux through oxidative phosphorylation. Although azide treatment also reduced activity (but not content) of both CuZn superoxide dismutase and catalase, a spectrum of pro-oxidants (and anti-oxidants) failed to mimic (or prevent) azide effects, arguing that losses in COX activity were not due to resultant compromises in free radical scavenging. Loss of COX activity was not attributable to reduced rates of mitochondrial protein synthesis or declines in either COX subunit mRNA or protein levels (COX I, II, IV). Co-incubation experiments using copper (CuCl2, Cu-His) and copper chelators (neocuproine, bathocuproine) indicated that azide effects were not mediated by interactions with either CuAor CuB. In contrast, difference spectroscopy and high performance liquid chromatography analyses demonstrated azide-induced losses in cytochrome aa 3 content although not to the same extent as catalytic activity. Differential azide effects on COX content relative to COX activity were confirmed using a refined inhibition time course in combination with blue native electrophoresis, and established that holoenzyme dissociation occurs subsequent to losses in catalytic activity. Collectively, these data suggest that COX deficiency can arise through enhanced holoenzyme dissociation, possibly through interactions with the structure or coordination of its heme moieties.
Electrophoresis | 2001
Tim Footz; Sybille Wunsam; Stephen C. Kulak; H. John Crabtree; D. Moira Glerum; Christopher J. Backhouse
Sample preparation has long been recognized as a significant barrier to the implementation of macroscopic protocols on microfabricated devices. Macroscopically, such tasks as removing salts, primers and other contaminants are performed by methods involving precipitation, specialized membranes and centrifuges, none of which are readily performed in microfluidic structures. Although some microfluidic systems have been developed for performing sample purification, their complexity may hinder the degree to which they can be implemented. We present a method of microchip‐based sample purification that can be performed with even the simplest microfluidic designs. The technique is demonstrated by removing primers from a sample of amplified DNA, leaving only the product DNA. This provides a new sample preparation capability for microfluidic systems.
Journal of Biological Chemistry | 2003
Christopher G. Carlson; Antoni Barrientos; Alexander Tzagoloff; D. Moira Glerum
We have characterized Cox16p, a new cytochrome oxidase (COX) assembly factor. This protein is encoded byCOX16, corresponding to the previously uncharacterized open reading frame YJL003w of the yeast genome.COX16 was identified in studies of COX-deficient mutants previously assigned to complementation group G22 of a collection of yeast pet mutants. To determine its location, Cox16p was tagged with a Myc epitope at the C terminus. The fusion protein, when expressed from a low-copy plasmid, complements the mutant and is detected solely in mitochondria. Cox16p-myc is an integral component of the mitochondrial inner membrane, with its C terminus exposed to the intermembrane space. Cox16 homologues are found in both the human and murine genomes, although human COX16 does not complement the yeast mutant. Cox16p does not appear to be involved in maturation of subunit 2, copper recruitment, or heme A biosynthesis. Cox16p is thus a new protein in the growing family of eukaryotic COX assembly factors for which there are as yet no specific functions known. Like other recently described nuclear gene products involved in expression of cytochrome oxidase, COX16 is a candidate for screening in inherited human COX deficiencies.
Human Mutation | 2008
Gloria Hsi; Lara M. Cullen; Georgina Macintyre; Matthew M. Chen; D. Moira Glerum; Diane W. Cox
ATP7B is a copper transporting P‐type ATPase defective in the autosomal recessive copper storage disorder, Wilson disease (WND). Functional assessment of variants helps to distinguish normal from disease‐causing variants and provides information on important amino acid residues. A total of 11 missense variants of ATP7B, originally identified in WND patients, were examined for their capacity to functionally complement a yeast mutant strain in which the yeast gene ortholog, CCC2, was disrupted. Solution structures of ATP7B domains were used to predict the effects of each variant on ATP7B structure. Three variants lie within the copper‐binding domain and eight within the ATP‐binding domain of ATP7B. All three ATP7B variants within the copper‐binding domain and four within the ATP‐binding domain showed full complementation of the yeast ccc2 phenotype. For the remaining four located in the ATP‐binding domain, p.Glu1064Lys and p.Val1106Asp were unable to complement the yeast ccc2 high‐affinity iron uptake deficiency phenotype, apparently due to mislocalization and/or change in conformation of the variant protein. p.Leu1083Phe exhibited a temperature‐sensitive phenotype with partial complementation at 30°C and a severe deficit at 37°C. p.Met1169Val only partially complemented the ccc2 phenotype at 30°C and 37°C. Therefore, four variant positions were identified as important for copper transport and as disease‐causing changes. Since the yeast assay specifically evaluates copper transport function, variants with normal transport could be defective in some other aspect of ATP7B function, particularly trafficking in mammalian cells. Functional assessment is critical for reliable use of mutation analysis as an aid to diagnosis of this clinically variable condition. Hum Mutat 29(4), 491–501, 2008.
Analytical Biochemistry | 2003
Barbara Marriage; M. Thomas Clandinin; Ian M. MacDonald; D. Moira Glerum
Biochemical analysis of oxidative phosphorylation (OXPHOS) disorders is traditionally carried out on muscle biopsies, cultured fibroblasts, and transformed lymphocytes. Here we present a new screening technique using lymphocytes to identify OXPHOS dysfunction and initially avoid an invasive diagnostic procedure. Lymphocytes represent an easily obtainable source of tissue that presents advantages over the use of fibroblasts or lymphoblast cell lines. The time delay in culturing skin fibroblasts and the interactions between cell transformation and mitochondrial activity are avoided in this methodology. The method requires a small amount of blood (<5 mL); can be completed in a few hours, and allows for repeated measurements. Our assay has been adapted from published methods utilizing cultured fibroblasts and transformed lymphocytes, and our data suggest that measurement of ATP synthesis in lymphocytes is an effective screening tool for diagnosing OXPHOS disorders. This method may also provide an objective tool for monitoring response to treatment and evaluating progression of disease.
Optics Express | 2008
Patrick M. Pilarski; Xuantao Su; D. Moira Glerum; Christopher J. Backhouse
It has been shown that the mitochondria are the dominant source of large-angle light scattering from human cells. In the limit of small mitochondria, we show that the large-angle (isotropic) light scattering of mitochondria may be analyzed and simulated with an adaptation of classical X-ray diffraction theory. In addition, we show that this approach may be extended to the case of anisotropic scatter. These results enable the rapid simulation and analysis of mitochondrial scattering patterns and allow the determination of some aspects of cell structure directly from experimental scattering patterns.