D.P. Ferreira
Instituto Superior Técnico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D.P. Ferreira.
International Journal of Molecular Sciences | 2013
David S. Conceição; D.P. Ferreira; Luis Filipe Vieira Ferreira
The present study investigates the photochemical properties of potential photosensitizers for photodynamic therapy, namely four commercial heptamethinecyanine dyes (IR125, IR780, IR813, IR820). Spectroscopic studies were made by means of laser induced fluorescence and laser flash photolysis in order to obtain fluorescence quantum yields and transient absorption spectra. Fluorescence lifetimes were also determined. The differences encountered were essentially related with the interaction of the sulfonate groups with the solvent, and also regarding the rigidification of the central bridge connecting the two nitrogen-containing heterocyclic groups. Transient absorption studies were performed both in aerated and oxygen free samples, to conclude about the formation of photoisomers and triplet state. For the four dyes under study, a cytotoxic evaluation in the dark and after irradiation was performed using HeLa cells as the model cell line, which revealed significant changes after irradiation mainly in IR125 and IR813 dyes. Confocal microscopy analysis showed that these dyes tend to enter to the intracellular space.
Carbohydrate Polymers | 2016
D.P. Ferreira; D.S. Conceição; Ricardo C. Calhelha; T. Sousa; Radu Socoteanu; Isabel C.F.R. Ferreira; L.F. Vieira Ferreira
Porphyrins and some of its derivatives are well known and widely used as photosensitizers (PSs) for Photodynamic Therapy of Cancer (PDT). The present study regards the characterization and evaluation of a synthesized asymmetric porphyrin dye in solution to be used as PS for PDT. This molecule was also incorporated into biopolymeric films composed by chitosan, polyethylene glycol (PEG) and gelatin in order to overtake some of the disadvantages inherent to the PS, but more important, to evaluate the potential of a system composed by the porphyrin/biopolymer to be applied as localized therapeutic agents. FTIR spectroscopy showed a strong interaction between the polymers involved in the preparation of the films under study: film 1: chitosan, film 2: chitosan/PEG and film 3: chitosan/gelatin. Photochemical studies were performed for the dye in solution and into the three different biopolymeric films. Ground state absorption showed the characteristic bands of these kinds of dyes in solution and also incorporated into the films. The films composed by porphyrin/chitosan and porphyrin into chitosan/gelatin, revealed the presence of non-emissive aggregates exhibiting a strong quenching effect in the fluorescence intensity, quantum yields and lifetimes. In this way, the system composed by the porphyrin incorporated into the chitosan/PEG film presents the best fluorescence quantum yield and lifetime. The transient absorption spectra were obtained for all the systems indicating the formation of an excited triplet state of the porphyrins following excitation, which takes special importance in the generation of phototoxic species namely singlet oxygen. Singlet oxygen quantum yields were also determined and the results obtained were very promising for the dye in solution but also for the dye into the different substrates. The release of the dye from the three different films onto a buffer solution was evaluated and we conclude that after a few days the dye was completely released by the substrates in acidic conditions. Confocal microscopy was used for the determination of the intracellular localization of the compound under study onto HeLa cells (human cervical cancer cells line). The evaluation of the PSs anticancer activity assumes special importance for PDT studies. The system should be less toxic in the dark and more active when irradiated, therefore, toxicity in the dark and phototoxicity studies onto HeLa cells were performed.
Molecules | 2012
P. Duarte; D.P. Ferreira; Isabel Ferreira Machado; Luis Filipe Vieira Ferreira; Hernán B. Rodríguez; Enrique San Román
The photophysical behaviour of phloxine B adsorbed onto microcrystalline cellulose was evaluated by reflectance spectroscopy and laser induced time-resolved luminescence in the picosecond-nanosecond and microsecond-millisecond ranges. Analysis of the absorption spectral changes with concentration points to a small tendency of the dye to aggregate in the range of concentrations under study. Prompt fluorescence, phosphorescence and delayed fluorescence spectral decays were measured at room temperature and 77 K, without the need of sample degassing because cellulose protects triplet states from oxygen quenching. In all cases, spectral changes with time and lifetime distribution analysis were consistent with the dye coexisting in two different environments: dyes tightly entrapped between polymer chains in crystalline regions of cellulose showed longer fluorescence and phosphorescence lifetimes and more energetic triplet states, while dyes adsorbed in more amorphous regions of the support showed shorter lifetimes and less energetic triplet states. This behaviour is discussed in terms of the different dye-support interactions in both kinds of adsorption sites.
Journal of Physical Chemistry B | 2016
D.P. Ferreira; D.S. Conceição; Fábio Fernandes; Tânia Sousa; Ricardo C. Calhelha; Isabel C.F.R. Ferreira; Paulo F. Santos; L.F. Vieira Ferreira
In this work, a squaraine dye CS5 was characterized and evaluated for its potential in photodynamic therapy. The studies were performed in ethanol and also in a powdered biopolymer, in this case chitosan. Ground state absorption, absolute fluorescence quantum yields, fluorescence lifetimes, and transient absorption were determined in order to evaluate the advantage of adsorbing the dye onto a biopolymer. Several concentrations of the dye, adsorbed onto chitosan, were prepared in order to evaluate the concentration effect on the photophysical parameters under study. A remarkable increase in the fluorescence quantum yield and lifetimes was detected when compared with the dye in solution. Also, a very clear dependence of the fluorescence quantum yield on the concentration range was found. A lifetime distribution analysis of these systems fluorescence evidenced the entrapment of the dye onto the chitosan environment with a monoexponential decay which corresponds to the monomer emission in slightly different environments. The transient absorption spectrum was obtained without sensitization indicating the existence of a triplet state which takes special importance in the generation of phototoxic species namely singlet oxygen. The subcellular localization of a photosensitizer is critical for efficient photoinduced cell death, in this way, colocalization studies were performed within HeLa cell line (human cervical carcinoma) through confocal microscopy. Toxicity in the dark and phototoxicity of CS5 were also evaluated for the same cellular model.
Journal of Nanomaterials | 2016
A. Hamdi; D.P. Ferreira; A.M. Ferraria; D.S. Conceição; L.F. Vieira Ferreira; Ana P. Carapeto; Sami Boufi; S. Bouattour; A.M. Botelho do Rego
Nanocomposites TiO2-CdS with different relative contents of CdS molar ratios Cd/Ti = 0.02, 0.03, 0.05, 0.1, 0.2, and 0.5 were studied. The structural, photophysical, and chemical properties were investigated using XRD, Raman spectroscopy, XPS, GSDR, and LIL. XRD and Raman results confirmed the presence of TiO2 and CdS with intensities dependent on the ratio Cd/Ti. The presence of CdSO4 was detected by XPS at the surface of all TiO2-CdS composites. The relative amount of sulphate was dependent on the CdS loading. Luminescence time-resolved spectra clearly proved the existence of an excitation transfer process from CdS to TiO2 through the luminescence emission from TiO2 after excitation of CdS at λexc=410 nm, where no direct excitation of TiO2 occurs. Photodegradation of a series of aromatic carboxylic acids—benzoic, salicylic, 4-bromobenzoic, 3-phenylpropionic, and veratric acids—showed a great enhancement in the photocatalytic efficiency of the TiO2-CdS composites, which is due, mainly, to the effect of the charge carriers’ increased lifetime. In addition, it was shown that the oxidation of CdS to CdSO4 did not result in the deactivation of the photocatalytic properties and even contributed to enhance the degradation efficiency.
International Journal of Molecular Sciences | 2012
Rica Boscencu; Anabela Sousa Oliveira; D.P. Ferreira; Luis Filipe Vieira Ferreira
Synthesis and spectral evaluation of new zinc and copper unsymmetrical mesoporphyrinic complexes are reported. Zn(II)-5-(4-acetoxy-3-methoxyphenyl)-10,15,20- tris-(4-carboxymethylphenyl)porphyrin, Zn(II)-5-[(3,4-methylenedioxy)phenyl]-10,15,20- tris-(4-carboxymethylphenyl)porphyrin, Cu(II)-5-(4-acetoxy-3-methoxyphenyl)-10,15,20- tris-(4-carboxymethylphenyl)porphyrin and Cu(II)-5-[(3,4-methylenedioxy)phenyl]-10,15,20- tris-(4-carboxymethylphenyl)porphyrin were synthesized using microwave-assisted synthesis. The complexes were characterized by elemental analysis, FT-IR, UV-Vis, EPR and NMR spectroscopy, which fully confirmed their structure. The spectral absorption properties of the porphyrinic complexes were studied in solvents with different polarities. Fluorescence emission and singlet oxygen formation quantum yields were evaluated for the compounds under study, revealing high yields for the zinc derivatives. The copper complexes are not emissive and only display residual capacity for singlet oxygen formation.
Molecules | 2013
Reda M. El-Shishtawy; Anabela Sousa Oliveira; Paulo Almeida; D.P. Ferreira; D.S. Conceição; Luis Filipe Vieira Ferreira
A water-soluble indocarbocyanine dye was synthesized and its photophysics were studied for the first time on two solid hosts, microcrystalline cellulose and β-cyclodextrin, as well as in homogeneous media. The inclusion of the indocarbocyanine moiety onto microcrystalline cellulose increased the dye aggregation with both H and J aggregates being formed. Adsorption on β-cyclodextrin enhanced aggregation in a similar way. The fluorescence quantum yields were determined for the powdered samples of the cyanine dye on the two hosts and a significant increase was observed relative to homogeneous solution. A remarkable concentration dependence was also detected in both cases. A lifetime distribution analysis has shown that the indocarbocyanine dye mainly occupies the amorphous part of cellulose and is not entrapped in the crystalline part of this host. In the β-CD case, the adsorption occurs outside the host cavity. In both hosts a strong concentration quenching effect is observed and only monomers emit. Both adsorptions may be explained by stereochemical constraints imposed by the two long sulphoethyl tails linked to nitrogen atoms of the indocarbocyanine dye.
International Journal of Molecular Sciences | 2012
Luis Filipe Vieira Ferreira; D.P. Ferreira; P. Duarte; Anabela Sousa Oliveira; E. Torres; I. Ferreira Machado; P. Almeida; Lucinda V. Reis; Paulo F. Santos
In this work, thia and selenocarbocyanines with n-alkyl chains of different length, namely with methyl, ethyl, propyl, hexyl and decyl substituents, were studied in homogeneous and heterogeneous media for comparison purposes. For both carbocyanine dyes adsorbed onto microcrystalline cellulose, a remarkable increase in the fluorescence quantum yields and lifetimes were detected, when compared with solution. Contrary to the solution behaviour, where the increase in the n-alkyl chains length increases to a certain extent the fluorescence emission ΦF and τF, on powdered solid samples a decrease of ΦF and τF was observed. The use of an integrating sphere enabled us to obtain absolute ΦF’s for all the powdered samples. The main difference for liquid homogeneous samples is that the increase of the alkyl chain strongly decreases the ΦF values, both for thiacarbocyanines and selenocarbocyanines. A lifetime distribution analysis for the fluorescence of these dyes adsorbed onto microcrystalline cellulose, evidenced location on the ordered and crystalline part of the substrate, as well as on the more disordered region where the lifetime is smaller. The increase of the n-alkyl chains length decreases the photoisomer emission for the dyes adsorbed onto microcrystalline cellulose, as detected for high fluences of the laser excitation, for most samples.
Bioorganic & Medicinal Chemistry | 2017
Sofia Friães; Amélia M. Silva; Renato E.F. Boto; D.P. Ferreira; José R. Fernandes; Eliana B. Souto; Paulo Almeida; Luis Filipe Vieira Ferreira; Lucinda V. Reis
New unsymmetrical aminosquarylium cyanine dyes were synthesized and their potential as photosensitizers evaluated. New dyes, derived from benzothiazole and quinoline, were prepared by nucleophilic substitution of the corresponding O-methylated, the key intermediate that was obtained by methylation with CF3SO3CH3 of the related zwitterionic unsymmetrical dye, with ammonia and methylamine, respectively. All three news dyes herein described displayed intense and narrow bands in the Vis/NIR region (693-714nm) and their singlet oxygen formation quantum yields ranged from 0.03 to 0.05. In vitro toxicity, in Caco-2 and HepG2 cells, indicated that dark toxicity was absent for concentrations up to 5µM (for the less active dye) or up to 1µM (for the two more active dyes). The three dyes present potential as photosensitizers, differing in irradiation conditions and period of incubation in the presence of irradiated dye. The less active dye needs a longer irradiation period to exhibit phototoxicity which is only evident after longer period of contact with cells (24h). However, the remaining two more active dyes produce higher phototoxicity, even at shorter incubation periods (1h), with shorter irradiation time (7min). Although in different extents, these dyes show promising in vitro results as photosensitizers.
Photochemical and Photobiological Sciences | 2013
D.P. Ferreira; D.S. Conceição; V. R. A. Ferreira; Vânia C. Graça; Paulo F. Santos; L.F. Vieira Ferreira