D.P. Snowden-Ifft
Occidental College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D.P. Snowden-Ifft.
Physical Review D | 2000
D.P. Snowden-Ifft; C. J. Martoff; J. M. Burwell
Weakly Interacting Massive Particles (WIMPs) are an attractive candidate for the dark matter thought to make up the bulk of the mass of our universe. We explore here the possibility of using a low pressure negative ion drift chamber to search for WIMPs. The innovation of drifting ions, instead of electrons, allows the design of a detector with exceptional sensitivity to, background rejection from, and signature of WIMPs.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2000
C. J. Martoff; D.P. Snowden-Ifft; T. Ohnuki; N.J.C. Spooner; M J Lehner
Abstract The spatial resolution in drift chamber detectors for ionizing radiation is limited by diffusion of the primary electrons. A strong magnetic field along the drift direction is often applied (Fancher et al., Nucl. Instr. and Meth. A 161 (1979) 383) because it suppresses the transverse diffusion, improving the resolution but at considerable increase in cost and complexity. Here we show that transverse track diffusion can be strongly suppressed without any magnetic field. This is achieved by using a gas additive which reversibly captures primary ionization electrons, forming negative ions. The ions drift with thermal energies even at very high drift fields and low pressures ( E/P=28.5 V / cm torr), and the diffusion decreases with increasing drift field. Upon arrival at the avalanche region of the chamber the negative ions are efficiently stripped and ordinary avalanche gain is obtained. Using this technique, r.m.s. transverse diffusion less than 200 μm has been achieved over a 15 cm drift path at 40 torr with zero magnetic field. The method can provide high spatial resolution in detectors with long drift distances and zero magnetic field. Negative ion drift chambers would be particularly useful at low pressures and in situations such as space-based or underground experiments where detector size scaleability is important and cost, space, or power constraints preclude the use of a magnetic field.
Astroparticle Physics | 2007
S. Burgos; J. Forbes; C. Ghag; M. Gold; V.A. Kudryavtsev; T.B. Lawson; D. Loomba; P. Majewski; D. Muna; A. St. J. Murphy; G. Nicklin; S. M. Paling; A. Petkov; S.J.S. Plank; M. Robinson; N. Sanghi; N.J.T. Smith; D.P. Snowden-Ifft; N.J.C. Spooner; T. J. Sumner; J. Turk; E. Tziaferi
Data from the DRIFT-IIa directional dark matter experiment are presented, collected during a near continuous 6 month running period. A detailed calibration analysis comparing data from gamma-ray, x-ray and neutron sources to a GEANT4 Monte Carlo simulations reveals an efficiency for detection of neutron induced recoils of 94±2(stat.)±5(sys.)%. Software-based cuts, designed to remove non-nuclear recoil events, are shown to reject 60 Co gamma-rays with a rejection factor of better than 8!10 -6 for all energies above threshold. An unexpected event population has been discovered and is shown here to be due to the alpha-decay of 222 Rn daughter nuclei that have attached to the central cathode. A limit on the flux of neutrons in the Boulby Underground Laboratory is derived from analysis of unshielded and shielded data.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2001
Tohru Ohnuki; D.P. Snowden-Ifft; C.Jeff Martoff
A Negative Ion Time Projection Chamber was used to measure the field dependence oflateral and longitudinal diffusion for CS2 anions drifting in mixtures of CS2 and Ar at 40 Torr. Ion drift velocities and limits on the capture distance for electrons as a function of field and gas mixture are also reported. # 2001 Elsevier Science B.V. All rights reserved. PACS: 29.40.Cs; 29.40.Gx; 51.50.+v
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2009
S. Burgos; E. Daw; J. Forbes; C. Ghag; M. Gold; C. Hagemann; V.A. Kudryavtsev; T.B. Lawson; D. Loomba; P. Majewski; D. Muna; A. St. J. Murphy; G. Nicklin; S. M. Paling; A. Petkov; S.J.S. Plank; M. Robinson; N. Sanghi; D.P. Snowden-Ifft; N.J.C. Spooner; J. Turk; E. Tziaferi
The Directional Recoil Identification From Tracks (DRIFT) collaboration utilizes low-pressure gaseous detectors to search for Weakly Interacting Massive Particle (WIMP) dark matter with directional signatures. A 252Cf neutron source was placed on each of the principal axes of a DRIFT detector in order to test its ability to measure directional signatures from the three components of very low-energy (∼keV/amu) recoil ranges. A high trigger threshold and the event selection procedure ensured that only sulfur recoils were analyzed. Sulfur recoils produced in the CS2 target gas by the 252Cf source closely match those expected from massive WIMP induced sulfur recoils. For each orientation of the source, with a threshold of ∼50 keV, a directional signal from the range components was observed, indicating that the detector has directional capability along all three axes, though in one direction the directionality was marginal. An analysis of these results yields an optimal orientation for DRIFT detectors when searching for a directional signature from WIMPs. Additional energy dependent information is provided to aid in understanding this effect.
Physics Reports | 2016
James Battat; I.G. Irastorza; A. Aleksandrov; Takashi Asada; E. Baracchini; J. Billard; G. Bosson; O. Bourrion; J. Bouvier; A. Buonaura; K. Burdge; S. Cebrián; P. Colas; L. Consiglio; T. Dafni; N. D’Ambrosio; C. Deaconu; G. De Lellis; T. Descombes; A. Di Crescenzo; N. Di Marco; Gabriela Druitt; Richard Eggleston; E. Ferrer-Ribas; T. Fusayasu; J. Galán; G. Galati; J. A. García; J. G. Garza; V. Gentile
The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.
Journal of Instrumentation | 2014
James Battat; J. Brack; E. Daw; A. Dorofeev; A. C. Ezeribe; J. R. Fox; J.-L. Gauvreau; M. Gold; L.J. Harmon; J. L. Harton; J. M. Landers; E. R. Lee; D. Loomba; J. A J Matthews; E. H. Miller; A. Monte; A. St. J. Murphy; S. M. Paling; N. Phan; M. Pipe; M. Robinson; S. W. Sadler; A. Scarff; D.P. Snowden-Ifft; N.J.C. Spooner; S. Telfer; D. Walker; D. Warner; L. Yuriev
Radon gas emanating from materials is of interest in environmental science and also a major concern in rare event non-accelerator particle physics experiments such as dark matter and double beta decay searches, where it is a major source of background. Notable for dark matter experiments is the production of radon progeny recoils (RPRs), the low energy (~100 keV) recoils of radon daughter isotopes, which can mimic the signal expected from WIMP interactions. Presented here are results of measurements of radon emanation from detector materials in the 1 metre cubed DRIFT-II directional dark matter gas time projection chamber experiment. Construction and operation of a radon emanation facility for this work is described, along with an analysis to continuously monitor DRIFT data for the presence of internal 222Rn and 218Po. Applying this analysis to historical DRIFT data, we show how systematic substitution of detector materials for alternatives, selected by this device for low radon emanation, has resulted in a factor of ~10 reduction in internal radon rates. Levels are found to be consistent with the sum from separate radon emanation measurements of the internal materials and also with direct measurement using an attached alpha spectrometer. The current DRIFT detector, DRIFT-IId, is found to have sensitivity to 222Rn of 2.5 {\mu}Bq/l with current analysis efficiency, potentially opening up DRIFT technology as a new tool for sensitive radon assay of materials.
Journal of Instrumentation | 2014
J. Brack; E. Daw; A. Dorofeev; A. C. Ezeribe; J. R. Fox; J.-L. Gauvreau; M. Gold; L.J. Harmon; J. L. Harton; R. Lafler; J. M. Landers; R. Lauer; E. R. Lee; D. Loomba; J. A J Matthews; E. H. Miller; A. Monte; A. St. J. Murphy; S. M. Paling; N. Phan; M. Pipe; M. Robinson; S. W. Sadler; A. Scarff; D.P. Snowden-Ifft; N.J.C. Spooner; S. Telfer; D. Walker; L. Yuriev
Low-pressure gas Time Projection Chambers being developed for directional dark matter searches offer a technology with strong particle identification capability combined with the potential to produce a definitive detection of Galactic Weakly Interacting Massive Particle (WIMP) dark matter. A source of events able to mimic genuine WIMP-induced nuclear recoil tracks arises in such experiments from the decay of radon gas inside the vacuum vessel. The recoils that result from associated daughter nuclei are termed Radon Progeny Recoils (RPRs). We present here experimental data from a long-term study using the DRIFT-II directional dark matter experiment at the Boulby Underground Laboratory of the RPRs, and other backgrounds that are revealed by relaxing the normal cuts that are applied to WIMP search data. By detailed examination of event classes in both spatial and time coordinates using 3.5 years of data, we demonstrate the ability to determine the origin of 4 specific background populations and describe development of new technology and mitigation strategies to suppress them.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2015
James Battat; E. Daw; A. Dorofeev; A. C. Ezeribe; J. R. Fox; J.-L. Gauvreau; M. Gold; L.J. Harmon; J. L. Harton; R. Lafler; J. M. Landers; R. Lauer; E. R. Lee; D. Loomba; A. Lumnah; J. A. J. Matthews; E. H. Miller; F. Mouton; A. St. J. Murphy; S. M. Paling; N. Phan; S. W. Sadler; A. Scarff; F. G. Schuckman Ii; D.P. Snowden-Ifft; N.J.C. Spooner; D. Walker
Abstract Background events in the DRIFT-IId dark matter detector, mimicking potential WIMP signals, are predominantly caused by alpha decays on the central cathode in which the alpha particle is completely or partially absorbed by the cathode material. We installed a 0.9 μ m thick aluminized-mylar cathode as a way to reduce the probability of producing these backgrounds. We study three generations of cathode (wire, thin-film, and radiologically clean thin-film) with a focus on the ratio of background events to alpha decays. Two independent methods of measuring the absolute alpha decay rate are used to ensure an accurate result, and agree to within 10%. Using alpha range spectroscopy, we measure the radiologically cleanest cathode version to have a contamination of 3.3±0.1 ppt 234 U and 73±2 ppb 238 U. This cathode reduces the probability of producing an RPR from an alpha decay by a factor of 70±20 compared to the original stainless steel wire cathode. First results are presented from a texturized version of the cathode, intended to be even more transparent to alpha particles. These efforts, along with other background reduction measures, have resulted in a drop in the observed background rate from 500/day to 1/day. With the recent implementation of full-volume fiducialization, these remaining background events are identified, allowing for background-free operation.
Physics Procedia | 2015
Jeff Brack; Ed Daw; A. Dorofeev; Anthony Ezeribe; J.-L. Gauvreau; Michael Gold; J. L. Harton; R. Lafler; R. Lauer; E. R. Lee; D. Loomba; John A. J. Matthews; E. H. Miller; Alissa Monte; Alex Murphy; S. M. Paling; N. Phan; Steve Sadler; Andrew Scarff; D.P. Snowden-Ifft; N.J.C. Spooner; S. Telfer; Daniel Walker; Matthew Williams; Leonid Yuriev
The DRIFT-IId dark matter detector is a m3-scale low-pressure TPC with directional sensitivity to WIMP-induced nuclear recoils. Its primary backgrounds were due to alpha decays from contamination on the central cathode. Efforts to reduce these backgrounds led to replacing the 20 μm wire central cathode with one constructed from 0.9 μm aluminized mylar, which is almost totally transparent to alpha particles. Detailed modeling of the nature and origin of the remaining backgrounds led to an in-situ, ppt-sensitive assay of alpha decay backgrounds from the central cathode. This led to further improvements in the thin-film cathode resulting in over 2 orders of magnitude reduction in backgrounds compared to the wire cathode. Finally, the addition of O2 to CS2 gas was found to produce multiple species of electronegative charge carriers, providing a method to determine the absolute position of nuclear recoils and reject all known remaining backgrounds while retaining a high efficiency for nuclear recoil detection.