D. Petit
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Petit.
Nature | 2005
James David Ralph Buchanan; Russell P. Cowburn; Ana-Vanessa Jausovec; D. Petit; Peter Seem; Gang Xiong; D. Atkinson; Kate Fenton; Dan A. Allwood; Matthew T. Bryan
We have found that almost all paper documents, plastic cards and product packaging contain a unique physical identity code formed from microscopic imperfections in the surface. This covert ‘fingerprint’ is intrinsic and virtually impossible to modify controllably. It can be rapidly read using a low-cost portable laser scanner. Most forms of document and branded-product fraud could be rendered obsolete by use of this code.
Nature | 2013
R Reinoud Lavrijsen; JiHyun Lee; Amalio Fernández-Pacheco; D. Petit; Rhodri Mansell; Russell P. Cowburn
One of the key challenges for future electronic memory and logic devices is finding viable ways of moving from today’s two-dimensional structures, which hold data in an x–y mesh of cells, to three-dimensional structures in which data are stored in an x–y–z lattice of cells. This could allow a many-fold increase in performance. A suggested solution is the shift register—a digital building block that passes data from cell to cell along a chain. In conventional digital microelectronics, two-dimensional shift registers are routinely constructed from a number of connected transistors. However, for three-dimensional devices the added process complexity and space needed for such transistors would largely cancel out the benefits of moving into the third dimension. ‘Physical’ shift registers, in which an intrinsic physical phenomenon is used to move data near-atomic distances, without requiring conventional transistors, are therefore much preferred. Here we demonstrate a way of implementing a spintronic unidirectional vertical shift register between perpendicularly magnetized ferromagnets of subnanometre thickness, similar to the layers used in non-volatile magnetic random-access memory. By carefully controlling the thickness of each magnetic layer and the exchange coupling between the layers, we form a ratchet that allows information in the form of a sharp magnetic kink soliton to be unidirectionally pumped (or ‘shifted’) from one magnetic layer to another. This simple and efficient shift-register concept suggests a route to the creation of three-dimensional microchips for memory and logic applications.
Journal of Applied Physics | 2008
D. Petit; Ana-Vanessa Jausovec; Daniel Read; Russell P. Cowburn
The potential experienced by transverse domain walls (TDWs) in the vicinity of asymmetric constrictions or protrusions in thin Permalloy nanowires is probed using spatially resolved magneto-optical Kerr effect measurements. Both types of traps are found to act as pinning centers for DWs. The strength of pinning is found to depend on the trap type as well as on the chirality of the incoming DW; both types of traps are seen to act either as potential wells or potential barriers, also depending on the chirality of the DW. Micromagnetic simulations have been performed that are in good qualitative agreement with the experimental results.
Scientific Reports | 2013
Amalio Fernández-Pacheco; Luis Serrano-Ramón; J. M. Michalik; M. Ricardo Ibarra; José María de Teresa; Liam O'Brien; D. Petit; JiHyun Lee; Russell P. Cowburn
Control of the motion of domain walls in magnetic nanowires is at the heart of various recently proposed three-dimensional (3D) memory devices. However, fabricating 3D nanostructures is extremely complicated using standard lithography techniques. Here we show that highly pure 3D magnetic nanowires with aspect-ratios of ~100 can be grown using focused electron-beam-induced-deposition. By combining micromanipulation, Kerr magnetometry and magnetic force microscopy, we determine that the magnetisation reversal of the wires occurs via the nucleation and propagation of domain walls. In addition, we demonstrate that the magnetic switching of individual 3D nanostructures can be directly probed by magneto-optical Kerr effect.
Nature Materials | 2010
E. R. Lewis; D. Petit; L. O’Brien; Amalio Fernández-Pacheco; Joao Sampaio; A-V. Jausovec; H. T. Zeng; Daniel Read; Russell P. Cowburn
Modern fabrication technology has enabled the study of submicron ferromagnetic strips with a particularly simple domain structure, allowing single, well-defined domain walls to be isolated and characterized. However, these domain walls have complex field-driven dynamics. The wall velocity initially increases with field, but above a certain threshold the domain wall abruptly slows down, accompanied by periodic transformations of the domain wall structure. This behaviour is potentially detrimental to the speed and proper functioning of proposed domain-wall-based devices, and although methods for suppression of the breakdown have been demonstrated in simulations, a convincing experimental demonstration is lacking. Here, we show experimentally that a series of cross-shaped traps acts to prevent transformations of the domain wall structure and increase the domain wall velocity by a factor of four compared to the maximum velocity on a plain strip. Our results suggest a route to faster and more reliable domain wall devices for memory, logic and sensing.
Applied Physics Letters | 2009
Amalio Fernández-Pacheco; J. M. De Teresa; R. Córdoba; M. R. Ibarra; D. Petit; Daniel Read; L. O’Brien; E. R. Lewis; H. T. Zeng; Russell P. Cowburn
The domain wall nucleation and propagation fields in cobalt nanowires grown by focused electron beam induced deposition are measured using spatially resolved magneto-optical Kerr effect. The study was systematically done for wire widths from 600 to 150 nm, finding significant differences in the value of both fields for the wires, indicating high quality domain wall conduit behavior. The extreme simplicity and flexibility of this technique with respect to the multistep lithographic processes used nowadays opens a different route to create magnetic nanostructures with a good control of the domain wall motion.
Physical Review Letters | 2009
Liam O'Brien; D. Petit; H. T. Zeng; E. R. Lewis; Joao Sampaio; Ana-Vanessa Jausovec; Daniel Read; Russell P. Cowburn
The magnetostatic interaction between two oppositely charged transverse domain walls (TDWs) in adjacent Permalloy nanowires is experimentally demonstrated. The dependence of the pinning strength on wire separation is investigated for distances between 13 and 125 nm. The results can be described fully by considering the distribution of magnetic charge within rigid, isolated TDWs. Alternative DW internal structure cannot reproduce this observed dependence. Modeling suggests the TDW internal structure is not appreciably disturbed, and remains rigid although the pinning strength is significant.
Journal of Applied Physics | 2004
Colm C. Faulkner; M.D. Cooke; D. A. Allwood; D. Petit; D. Atkinson; Russell P. Cowburn
We report on the controlled pinning and depinning of head-to-head domain walls with individual artificial nanotraps in rounded L-shaped Ni81Fe19 wires. Domain walls were nucleated and injected into one arm of an L-shaped planar wire structure with a wire width of 200 nm and a thickness of 5 nm. The domain walls were propagated through a rounded corner into an orthogonal output wire by a 27 Hz anticlockwise rotating field. A highly sensitive magneto-optical Kerr magnetometer system was used to detect magnetization reversals around single wedge shaped nanotraps in the output wire of different samples. Domain wall propagation occurred at a mean measured x-field value of 6.8 Oe in the output wire arm when not interacting with a trap. Domain wall nanotraps with dimensions as small as depth Dt=35 nm and width Wt=55 nm were found to effectively pin domain walls. In general, the depinning field of a domain wall from a trap increased with trap size. Hysteresis loops and plots of domain walls depinning fields as a ...
Nanotechnology | 2009
Amalio Fernández-Pacheco; J. M. De Teresa; A Szkudlarek; R. Córdoba; M. R. Ibarra; D. Petit; L. O’Brien; H. T. Zeng; E. R. Lewis; Daniel Read; Russell P. Cowburn
We systematically study individual micro- and nanometric polycrystalline cobalt wires grown by focused-electron-beam-induced-deposition. The deposits were grown in a range of aspect ratios varying from 1 up to 26. The minimum lateral dimension of the nanowires was 150 nm, for a thickness of 40 nm. Atomic force microscopy images show beam-current-dependent profiles, associated with different regimes of deposition. The magnetization reversal of individual nanowires is studied by means of the spatially resolved magneto-optical Kerr effect. Abrupt switching is observed, with a systematic dependence on the wires dimensions. This dependence of the coercive field is understood in magnetostatic terms, and agrees well with previous results on cobalt wires grown with different techniques. The influence of compositional gradients along the structural profile on the magnetic reversal is studied by using micromagnetic simulations. This work demonstrates the feasibility of using this technique to fabricate highly pure magnetic nanostructures, and highlights the advantages and disadvantages of the technique with respect to more conventional ones.
Applied Physics Letters | 2009
E. R. Lewis; D. Petit; L. Thevenard; Ana-Vanessa Jausovec; L. O’Brien; Daniel Read; Russell P. Cowburn
The pinning of a magnetic domain wall in a curved Permalloy (NiFe) nanostrip is experimentally studied. We examine the dependence of the pinning on both the radius of curvature of the bend and the chirality of the transverse domain wall. We find that bends act as potential wells or potential barriers depending on the chirality of the domain wall; the pinning field in both cases increases with decreasing radius of curvature. Micromagnetic simulations are consistent with the experimental results and show that both exchange and demagnetizing energies play an important role.