D. R. Anderson
Keele University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. R. Anderson.
Publications of the Astronomical Society of the Pacific | 2006
Don Pollacco; I. Skillen; A. Collier Cameron; D. J. Christian; C. Hellier; J. Irwin; T. A. Lister; R. A. Street; Richard G. West; D. R. Anderson; W. I. Clarkson; H. J. Deeg; B. Enoch; A. Evans; A. Fitzsimmons; C. A. Haswell; Simon T. Hodgkin; K. Horne; Stephen R. Kane; F. P. Keenan; P. F. L. Maxted; A. J. Norton; Julian P. Osborne; N. Parley; R. Ryans; B. Smalley; P. J. Wheatley; D. M. Wilson
ABSTRACT The SuperWASP cameras are wide‐field imaging systems at the Observatorio del Roque de los Muchachos on the island of La Palma in the Canary Islands, and at the Sutherland Station of the South African Astronomical Observatory. Each instrument has a field of view of some 482 deg2 with an angular scale of 13 \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape
The Astrophysical Journal | 2009
L. Hebb; Andrew Collier-Cameron; B. Loeillet; Don Pollacco; G. Hébrard; R. A. Street; F. Bouchy; H. C. Stempels; C. Moutou; E. K. Simpson; S. Udry; Y. C. Joshi; Richard G. West; I. Skillen; D. M. Wilson; I. McDonald; N. P. Gibson; S. Aigrain; D. R. Anderson; Chris R. Benn; D. J. Christian; B. Enoch; C. A. Haswell; C. Hellier; K. Horne; J. Irwin; T. A. Lister; P. F. L. Maxted; Michel Mayor; A. J. Norton
\farcs
Nature | 2011
Nikku Madhusudhan; Joseph E. Harrington; Kevin B. Stevenson; Sarah Nymeyer; Christopher J. Campo; P. J. Wheatley; Drake Deming; Jasmina Blecic; Ryan A. Hardy; Nate B. Lust; D. R. Anderson; Andrew Collier-Cameron; Christopher B. T. Britt; William C. Bowman; L. Hebb; C. Hellier; P. F. L. Maxted; Don Pollacco; Richard G. West
\end{document} 7 pixel−1, and is capable of delivering photometry with accuracy better than 1% for objects having \documentclass{aastex} \usepackage{amsbsy} \usepa...
The Astrophysical Journal | 2010
D. R. Anderson; C. Hellier; M. Gillon; A. H. M. J. Triaud; B. Smalley; L. Hebb; A. Collier Cameron; P. F. L. Maxted; D. Queloz; Richard G. West; S. J. Bentley; B. Enoch; K. Horne; T. A. Lister; M. Mayor; N. Parley; F. Pepe; Don Pollacco; D. Ségransan; S. Udry; D. M. Wilson
We report on the discovery of WASP-12b, a new transiting extrasolar planet with R pl = 1.79+0.09 –0.09 RJ and M pl = 1.41+0.10 –0.10 M J. The planet and host star properties were derived from a Monte Carlo Markov Chain analysis of the transit photometry and radial velocity data. Furthermore, by comparing the stellar spectrum with theoretical spectra and stellar evolution models, we determined that the host star is a supersolar metallicity ([M/H] = 0.3+0.05 –0.15), late-F (T eff = 6300+200 –100 K) star which is evolving off the zero-age main sequence. The planet has an equilibrium temperature of T eq = 2516 K caused by its very short period orbit (P = 1.09 days) around the hot, twelfth magnitude host star. WASP-12b has the largest radius of any transiting planet yet detected. It is also the most heavily irradiated and the shortest period planet in the literature.
Nature | 2009
C. Hellier; D. R. Anderson; A. Collier Cameron; Michaël Gillon; L. Hebb; P. F. L. Maxted; D. Queloz; B. Smalley; A. H. M. J. Triaud; Richard G. West; D. M. Wilson; S. J. Bentley; B. Enoch; K. Horne; J. Irwin; T. A. Lister; Michel Mayor; N. Parley; F. Pepe; Don Pollacco; D. Ségransan; S. Udry; P. J. Wheatley
The carbon-to-oxygen ratio (C/O) in a planet provides critical information about its primordial origins and subsequent evolution. A primordial C/O greater than 0.8 causes a carbide-dominated interior, as opposed to the silicate-dominated composition found on Earth; the atmosphere can also differ from those in the Solar System. The solar C/O is 0.54 (ref. 3). Here we report an analysis of dayside multi-wavelength photometry of the transiting hot-Jupiter WASP-12b (ref. 6) that reveals C/O ≥ 1 in its atmosphere. The atmosphere is abundant in CO. It is depleted in water vapour and enhanced in methane, each by more than two orders of magnitude compared to a solar-abundance chemical-equilibrium model at the expected temperatures. We also find that the extremely irradiated atmosphere (T > 2,500 K) of WASP-12b lacks a prominent thermal inversion (or stratosphere) and has very efficient day–night energy circulation. The absence of a strong thermal inversion is in stark contrast to theoretical predictions for the most highly irradiated hot-Jupiter atmospheres.
Astronomy and Astrophysics | 2009
M. Gillon; B. Smalley; L. Hebb; D. R. Anderson; A. H. M. J. Triaud; C. Hellier; P. F. L. Maxted; D. Queloz; D. M. Wilson
We report the discovery of the transiting giant planet WASP-17b, the least-dense planet currently known. It is 1.6 Saturn masses, but 1.5-2 Jupiter radii, giving a density of 6%-14% that of Jupiter. WASP-17b is in a 3.7 day orbit around a sub-solar metallicity, V = 11.6, F6 star. Preliminary detection of the Rossiter-McLaughlin effect suggests that WASP-17b is in a retrograde orbit (λ –150°), indicative of a violent history involving planet-planet or star-planet scattering. WASP-17bs bloated radius could be due to tidal heating resulting from recent or ongoing tidal circularization of an eccentric orbit, such as the highly eccentric orbits that typically result from scattering interactions. It will thus be important to determine more precisely the current orbital eccentricity by further high-precision radial velocity measurements or by timing the secondary eclipse, both to reduce the uncertainty on the planets radius and to test tidal-heating models. Owing to its low surface gravity, WASP-17bs atmosphere has the largest scale height of any known planet, making it a good target for transmission spectroscopy.
Monthly Notices of the Royal Astronomical Society | 2011
D. R. Anderson; A. M. S. Smith; Audrey Lanotte; Travis S. Barman; A. Collier Cameron; Christopher J. Campo; Michaël Gillon; Joseph E. Harrington; C. Hellier; P. F. L. Maxted; D. Queloz; A. H. M. J. Triaud; P. J. Wheatley
The ‘hot Jupiters’ that abound in lists of known extrasolar planets are thought to have formed far from their host stars, but migrate inwards through interactions with the proto-planetary disk from which they were born, or by an alternative mechanism such as planet–planet scattering. The hot Jupiters closest to their parent stars, at orbital distances of only ∼0.02 astronomical units, have strong tidal interactions, and systems such as OGLE-TR-56 have been suggested as tests of tidal dissipation theory. Here we report the discovery of planet WASP-18b with an orbital period of 0.94 days and a mass of ten Jupiter masses (10 MJup), resulting in a tidal interaction an order of magnitude stronger than that of planet OGLE-TR-56b. Under the assumption that the tidal-dissipation parameter Q of the host star is of the order of 106, as measured for Solar System bodies and binary stars and as often applied to extrasolar planets, WASP-18b will be spiralling inwards on a timescale less than a thousandth that of the lifetime of its host star. Therefore either WASP-18 is in a rare, exceptionally short-lived state, or the tidal dissipation in this system (and possibly other hot-Jupiter systems) must be much weaker than in the Solar System.
Astronomy and Astrophysics | 2012
Michaël Gillon; A. H. M. J. Triaud; Jonathan J. Fortney; Brice-Olivier Demory; Emmanuel Jehin; Monika Lendl; Pierre Magain; P. Kabath; D. Queloz; R. Alonso; D. R. Anderson; A. Collier Cameron; A. Fumel; L. Hebb; C. Hellier; Audrey Lanotte; P. F. L. Maxted; Nami Mowlavi; B. Smalley
The gaseous giant planets WASP-4b and WASP-5b are transiting 12-magnitude solar-type stars in the Southern hemisphere. The aim of the present work is to refine the parameters of these systems using high cadence VLT/FORS2 z-band transit photometry and highresolution VLT/UVES spectroscopy. For WASP-4, the new estimates for the planet radius and mass from a combined analysis of our VLT data with previously published transit photometry and radial velocities are Rp = 1.30 +0.05 −0.04 RJ and Mp = 1.21 +0.13 −0.08 MJ, resulting in a density ρp = 0.55 +0.04 −0.02 ρJ. The radius and mass for the host star are R∗ = 0.87 +0.04
The Astrophysical Journal | 2011
Christopher J. Campo; Joseph E. Harrington; Ryan A. Hardy; Kevin B. Stevenson; Sarah Nymeyer; Darin Ragozzine; Nate B. Lust; D. R. Anderson; Andrew Collier-Cameron; Jasmina Blecic; Christopher B. T. Britt; William C. Bowman; P. J. Wheatley; Thomas J. Loredo; Drake Deming; L. Hebb; C. Hellier; P. F. L. Maxted; Don Pollaco; Richard G. West
We report the detection of thermal emission at 4.5 and 8 mu m from the planet WASP-17b. We used Spitzer to measure the system brightness at each wavelength during two occultations of the planet by its host star. By combining the resulting light curves with existing transit light curves and radial-velocity measurements in a simultaneous analysis, we find the radius of WASP-17b to be 2.0R(Jup), which is 0.2R(Jup) larger than any other known planet and 0.7R(Jup) larger than predicted by the standard cooling theory of irradiated gas giant planets. We find the retrograde orbit of WASP-17b to be slightly eccentric, with 0.0012 < e < 0.070 (3 sigma). Such a low eccentricity suggests that, under current models, tidal heating alone could not have bloated the planet to its current size, so the radius of WASP-17b is currently unexplained. From the measured planet-star flux-density ratios we infer 4.5 and 8 mu m brightness temperatures of 1881 +/- 50 and 1580 +/- 150 K, respectively, consistent with a low-albedo planet that efficiently redistributes heat from its day side to its night side.
Monthly Notices of the Royal Astronomical Society | 2013
A. P. Doyle; B. Smalley; P. F. L. Maxted; D. R. Anderson; A. Collier Cameron; Michaël Gillon; C. Hellier; Don Pollacco; D. Queloz; A. H. M. J. Triaud; Richard G. West
We present twenty-three transit light curves and seven occultation light curves for the ultra-short period planet WASP -43 b, in addition to eight new measurements of the radial velocity of the star. Thanks to this extensive data set, we improve significantly t he parameters of the system. Notably, the largely improved precision on the stellar density (2.41± 0.08ρ⊙) combined with constraining the age to be younger than a Hubble time allows us to break the degeneracy of the stellar solution mentioned in the discovery paper. The resulting stellar mass and size are 0.717± 0.025 M⊙ and 0.667± 0.011 R⊙. Our deduced physical parameters for the planet are 2.034± 0.052 MJup and 1.036± 0.019 RJup. Taking into account its level of irradiation, the high dens ity of the planet favors an old age and a massive core. Our deduced orbital eccentricity, 0.0035 +0.0060 −0.0025 , is consistent with a fully circularized orbit. We detect th e emission of the planet at 2.09µm at better than 11-σ, the deduced occultation depth being 1560± 140 ppm. Our detection of the occultation at 1.19µm is marginal (790± 320 ppm) and more observations are needed to confirm it. We pla ce a 3-σ upper limit of 850 ppm on the depth of the occultation at∼0.9µm. Together, these results strongly favor a poor redistribu tion of the heat to the night-side of the planet, and marginally favor a model with no day-side temperature inversion.