D. R. Blake
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. R. Blake.
Nature Geoscience | 2013
Stefanie Kirschke; P. Bousquet; Philippe Ciais; Marielle Saunois; Josep G. Canadell; E. J. Dlugokencky; P. Bergamaschi; D. Bergmann; D. R. Blake; Lori Bruhwiler; Philip Cameron-Smith; Simona Castaldi; F. Chevallier; Liang Feng; A. Fraser; Martin Heimann; E. L. Hodson; Sander Houweling; B. Josse; P. J. Fraser; P. B. Krummel; Jean-Francois Lamarque; R. L. Langenfelds; Corinne Le Quéré; Vaishali Naik; Simon O'Doherty; Paul I. Palmer; I. Pison; David A. Plummer; Benjamin Poulter
Methane is an important greenhouse gas, responsible for about 20% of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios-which differ in fossil fuel and microbial emissions-to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain.
Geophysical Research Letters | 1999
Daniel A. Jaffe; Theodore L. Anderson; Dave S. Covert; Robert A. Kotchenruther; Barbara Trost; Jen Danielson; William R. Simpson; Terje K. Berntsen; Sigrún Karlsdóttir; D. R. Blake; Joyce M. Harris; G. R. Carmichael; Itsushi Uno
Using observations from the Cheeka Peak Observatory in northwestern Washington State during March-April, 1997, we show that Asian anthropogenic emissions significantly impact the concentrations of a large number of atmospheric species in the air arriving to North America during spring. Isentropic back-trajectories can be used to identify possible times when this impact will be felt, however trajectories alone are not sufficient to indicate the presence of Asian pollutants. Detailed chemical and meteorological data from one of these periods (March 29th, 1997) indicates that the surface emissions were lifted into the free troposphere over Asia and then transported to North America in ∼6 days.
Science | 1988
D. R. Blake; F. Sherwood Rowland
The average worldwide tropospheric mixing ratio of methane has increased by 11% from 1.52 parts per million by volume (ppmv) in January 1978 to 1.684 ppmv in September 1987, for an increment of 0.016 � 0.001 ppmv per year. Within the limits of our measurements, the global tropospheric mixing ratio for methane over the past decade is consistent either with a linear growth rate of 0.016 � 0.001 ppmv per year or with a slight lessening of the rate of growth over the past 5 years. No indications were found of an effect of the El Ni�o-Southern Oscillation-El Chichon events of 1982-83 on total global methane, although severe reductions were reported in the Pacific Northwest during that time period. The growth in tropospheric methane may have increased the water concentration in the stratosphere by as much as 28% since the 1940s and 45% over the past two centuries and thus could have increased the mass of precipitable water available for formation of polar stratospheric clouds.
Journal of Geophysical Research | 1998
Jeffrey S. Reid; Peter V. Hobbs; Ronald J. Ferek; D. R. Blake; J. Vanderlei Martins; Michael R. Dunlap; Catherine Liousse
Gas and particle measurements are described for optically thick regional hazes, dominated by aged smoke from biomass burning, in the cerrado and rain forested regions of Brazil. The hazes tended to be evenly mixed from the surface to the trade wind inversion at 3–4 km in altitude. The properties of aged gases and particles in the regional hazes were significantly different from those of young smoke (<4 min old). As the smoke aged, the total amount of carbon in non-methane hydrocarbon species (C<11) was depleted by about one third due to transformations into CO2, CO, and reactive molecules, and removed by dry deposition and/or by conversion to particulate matter. As the smoke particles aged, their sizes increased significantly due to coagulation and mass growth by secondary species (e.g., ammonium, organic acids and sulfate). During aging, condensation and gas-to-particle conversion of inorganic and organic vapors increased the aerosol mass by ∼20–40%. One third to one half of this mass growth likely occurred in the first few hours of aging due to the condensation of large organic molecules. The remaining mass growth was probably associated with photochemical and cloud-processing mechanisms operating over several days. Changes in particle sizes and compositions during aging had a large impact on the optical properties of the aerosol. Over a 2 to 4 day period, the fine particle mass-scattering efficiency and single-scattering albedo increased by 1 m2 g−1, and ∼0.06, respectively. Conversely, the Angstrom coefficient, backscatter ratio, and mass absorption efficiency decreased significantly with age.
Journal of Geophysical Research | 1996
Daniel J. Jacob; E. G. Heikes; Song-Miao Fan; Jennifer A. Logan; Denise L. Mauzerall; J. D. Bradshaw; H. B. Singh; G. L. Gregory; Robert W. Talbot; D. R. Blake; G. W. Sachse
The photochemistry of the troposphere over the South Atlantic basin is examined by modeling of aircraft observations up to 12-km altitude taken during the TRACE A expedition in September–October 1992. A close balance is found in the 0 to 12-km column between photochemical production and loss of O3, with net production at high altitudes compensating for weak net loss at low altitudes. This balance implies that O3 concentrations in the 0–12 km column can be explained solely by in situ photochemistry; influx from the stratosphere is negligible. Simulation of H2O2, CH3OOH, and CH2O concentrations measured aboard the aircraft lends confidence in the computations of O3 production and loss rates, although there appears to be a major gap in current understanding of CH2O chemistry in the marine boundary layer. The primary sources of NOx over the South Atlantic Basin appear to be continental (biomass burning, lightning, soils). There is evidence that NOx throughout the 0 to 12-km column is recycled from its oxidation products rather than directly transported from its primary sources. There is also evidence for rapid conversion of HNO3 to NOx in the upper troposphere by a mechanism not included in current models. A general representation of the O3 budget in the tropical troposphere is proposed that couples the large-scale Walker circulation and in situ photochemistry. Deep convection in the rising branches of the Walker circulation injects NOx from combustion, soils, and lightning to the upper troposphere, leading to O3 production; eventually, the air subsides and net O3 loss takes place in the lower troposphere, closing the O3 cycle. This scheme implies a great sensitivity of the oxidizing power of the atmosphere to NOx emissions in the tropics.
Nature | 2001
Hanwant B. Singh; Y. Chen; Amanda C. Staudt; Daniel J. Jacob; D. R. Blake; Brian G. Heikes; Julie A. Snow
The presence of oxygenated organic compounds in the troposphere strongly influences key atmospheric processes. Such oxygenated species are, for example, carriers of reactive nitrogen and are easily photolysed, producing free radicals—and so influence the oxidizing capacity and the ozone-forming potential of the atmosphere—and may also contribute significantly to the organic component of aerosols. But knowledge of the distribution and sources of oxygenated organic compounds, especially in the Southern Hemisphere, is limited. Here we characterize the tropospheric composition of oxygenated organic species, using data from a recent airborne survey conducted over the tropical Pacific Ocean (30° N to 30° S). Measurements of a dozen oxygenated chemicals (carbonyls, alcohols, organic nitrates, organic pernitrates and peroxides), along with several C2–C8 hydrocarbons, reveal that abundances of oxygenated species are extremely high, and collectively, oxygenated species are nearly five times more abundant than non-methane hydrocarbons in the Southern Hemisphere. Current atmospheric models are unable to correctly simulate these findings, suggesting that large, diffuse, and hitherto-unknown sources of oxygenated organic compounds must therefore exist. Although the origin of these sources is still unclear, we suggest that oxygenated species could be formed via the oxidation of hydrocarbons in the atmosphere, the photochemical degradation of organic matter in the oceans, and direct emissions from terrestrial vegetation.
Journal of Geophysical Research | 1994
H. B. Singh; D. O'Hara; D. Herlth; W. Sachse; D. R. Blake; J. D. Bradshaw; M. Kanakidou; Paul J. Crutzen
Acetone (CH3COCH3) was found to be the dominant nonmethane organic species present in the atmosphere sampled primarily over eastern Canada (0–6 km, 35°–65°N) during ABLE3B (July to August 1990). A concentration range of 357 to 2310 ppt (= 10−12 v/v) with a mean value of 1140±413 ppt was measured. Under extremely clean conditions, generally involving Arctic flows, lowest (background) mixing ratios of 550±100 ppt were present in much of the troposphere studied. Correlations between atmospheric mixing ratios of acetone and select species such as C2H2, CO, C3H8, C2C14 and isoprene provided important clues to its possible sources and to the causes of its atmospheric variability. Biomass burning as a source of acetone has been identified for the first time. By using atmospheric data and three-dimensional photochemical models, a global acetone source of 40–60 Tg (= 1012 g)/yr is estimated to be present. Secondary formation from the atmospheric oxidation of precursor hydrocarbons (principally propane, isobutane, and isobutene) provides the single largest source (51%). The remainder is attributable to biomass burning (26%), direct biogenic emissions (21%), and primary anthropogenic emissions (3%). Atmospheric removal of acetone is estimated to be due to photolysis (64%), reaction with OH radicals (24%), and deposition (12%). Model calculations also suggest that acetone photolysis contributed significantly to PAN formation (100–200 ppt) in the middle and upper troposphere of the sampled region and may be important globally. While the source-sink equation appears to be roughly balanced, much more atmospheric and source data, especially from the southern hemisphere, are needed to reliably quantify the atmospheric budget of acetone.
Journal of Geophysical Research | 1996
Kenneth E. Pickering; Anne M. Thompson; Yansen Wang; Wei-Kuo Tao; Donna P. McNamara; Volker W. J. H. Kirchhoff; Brian G. Heikes; Glen W. Sachse; J. D. Bradshaw; G. L. Gregory; D. R. Blake
A series of large mesoscale convective systems that occurred during the Brazilian phase of GTE/TRACE A (Transport and Atmospheric Chemistry near the Equator-Atlantic) provided an opportunity to observe deep convective transport of trace gases from biomass burning. This paper reports a detailed analysis of flight 6, on September 27, 1992, which sampled cloud- and biomass-burning-perturbed regions north of Brasilia. High-frequency sampling of cloud outflow at 9-12 km from the NASA DC-8 showed enhancement of CO mixing ratios typically a factor of 3 above background (200- 300 parts per billion by volume (ppbv) versus 90 ppbv) and significant increases in NOx and hydrocarbons. Clear signals of lightning-generated NO were detected; we estimate that at least 40% of NO x at the 9.5-km level and 32% at 11.3 km originated from lightning. Four types of model studies have been performed to analyze the dynamical and photochemical characteristics of the series of convective events. (1) Regional simulations for the period have been performed with the NCAR/Penn State mesoscale model (MM5), including tracer transport of carbon monoxide, initialized with observations. Middle-upper tropospheric enhancements of a factor of 3 above background are reproduced. (2) A cloud-resolving model (the Goddard cumulus ensemble (GCE) model) has been run for one representative convective cell during the September 26-27 episode. (3) Photochemical calculations (the Goddard tropospheric chemical model), initialized with trace gas observations (e.g., CO, NO x, hydrocarbons, 03) observed in cloud outflow, show appreciable 0 3 formation postconvection, initially up to 7-8 ppbv O3/d. (4) Forward trajectories from cloud outflow levels (postconvective conditions) put the ozone-producing air masses in eastern Brazil and the tropical Atlantic within 2-4 days and over the Atlantic, Africa, and the Indian Ocean in 6-8 days. Indeed, 3-4 days after the convective episode (September 30, 1992), upper tropospheric levels in the Natal ozone sounding show an average increase of -30 ppbv (3 Dobson units (DU) integrated) compared to the September 28 sounding. Our simulated net 0 3 production rates in cloud outflow are a factor of 3 or more greater than those in air undisturbed by the storms. Integrated over the 8- to 16-km cloud outflow layer, the postconvection net 0 3 production (-5-6 DU over 8 days) accounts for -25% of the excess 03 (15-25 DU) over the South Atlantic. Comparison of TRACE A Brazilian ozonesondes and the frequency of deep convection with climatology (Kirchhoff et al., this issue) suggests that the late September 1992 conditions represented an unusually active period for both convection and upper tropospheric ozone formation.
Journal of Geophysical Research | 1998
Ronald J. Ferek; Jeffrey S. Reid; Peter V. Hobbs; D. R. Blake; Catherine Liousse
Airborne measurements of the emissions of gases and particles from 19 individual forest, cerrado, and pasture fires in Brazil were obtained during the Smoke, Clouds, and Radiation-Brazil (SCAR-B) study in August-September 1995. Emission factors were determined for a number of major and minor gaseous and particulate species, including carbon dioxide, carbon monoxide, sulfur dioxide, nitrogen oxides, methane, nonmethane hydrocarbons, halocarbons, particulate (black and organic) carbon, and particulate ionic species. The magnitude of the emission factors for gaseous species were determined primarily by the relative amounts of flaming and smoldering combustion, rather than differences in vegetation type. Hydrocarbons and halocarbons were well correlated with CO, which is indicative of emissions primarily associated with smoldering combustion. Although there was large variability between fires, higher emission factors for SO2 and NOχ were associated with an increased ratio of flaming to smoldering combustion; this could be due to variations in the amounts of sulfur and nitrogen in the fuels. Emission factors for particles were not so clearly associated with smoldering combustion as those for hydrocarbons. The emission factors measured in this study are similar to those measured previously in Brazil and Africa. However, particle emission factors from fires in Brazil appear to be roughly 20 to 40% lower than those from North American boreal forest fires.
Journal of Geophysical Research | 1996
Oliver W. Wingenter; Michael K. Kubo; Nicola J. Blake; Tyrrel W. Smith; D. R. Blake; F. Sherwood Rowland
Nonmethane hydrocarbons and halocarbons were measured during two Lagrangian experiments conducted in the lower troposphere of the North Atlantic as part of the June 1992, Atlantic Stratosphere Transition Experiment/Marine Aerosol and Gas Exchange (ASTEX/MAGE) expedition. The first experiment was performed in very clean marine air. Meteorological observations indicate that the height of the marine boundary layer rose rapidly, entraining free tropospheric air. However, the free tropospheric and marine boundary layer halocarbon concentrations were too similar to allow this entrainment to be quantified by these measurements. The second Lagrangian experiment took place along the concentration gradient of an aged continental air mass advecting from Europe. The trace gas measurements confirm that the National Center for Atmospheric Research (NCAR) Electra aircraft successfully intercepted the same air mass on consecutive days. Two layers, a surface layer and a mixed layer with chemically distinct compositions, were present within the marine boundary layer. The composition of the free troposphere was very different from that of the mixed layer, making entrainment from the free troposphere evident. Concentrations of the nonmethane hydrocarbons in the Lagrangian surface layer were observed to become depleted relative to the longer-lived tetrachloroethene. A best fit to the observations was calculated using various combinations of the three parameters, loss by reaction with hydroxyl, loss by reaction with chlorine, and/or dilution from the mixed layer. These calculations provided estimated average concentrations in the surface layer for a 5-hour period from dawn to 11 UT of 0.3 ± 0.5 × 106 molecules cm−3 for HO, and 3.3 ± 1.1 × 104 molecules cm−3 for Cl. Noontime concentration estimates were 2.6 ± 0.7 × 106 molecules cm−3 for HO and 6.5 ± 1.4 × 104 molecules cm−3 for Cl.