D. R. Brooks
Rothamsted Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. R. Brooks.
Agricultural and Forest Entomology | 2003
P. A. Shah; D. R. Brooks; Joe N. Perry; Ian P. Woiwod
1 Studies of the epigeal coleopteran fauna on five pairs of organic and conventional farms were carried out between May and July 1994 in southern England using pitfall trapping. A total of 27 749 individuals and 140 species were identified. Overall, abundance of Coleoptera was greatest on organically managed farms.
Proceedings of the Royal Society of London B: Biological Sciences | 2005
David A. Bohan; Caroline W.H Boffey; D. R. Brooks; S. J. Clark; Alan M. Dewar; L. G. Firbank; A. J. Haughton; Cathy Hawes; Matthew S. Heard; M. J. May; Juliet L. Osborne; Joe N. Perry; Peter Rothery; David B. Roy; R. J. Scott; G. R. Squire; Ian P. Woiwod; G. T. Champion
We evaluated the effects of the herbicide management associated with genetically modified herbicide-tolerant (GMHT) winter oilseed rape (WOSR) on weed and invertebrate abundance and diversity by testing the null hypothesis that there is no difference between the effects of herbicide management of GMHT WOSR and that of comparable conventional varieties. For total weeds there were few treatment differences between GMHT and conventional cropping, but large and opposite treatment effects were observed for dicots and monocots. In the GMHT treatment, there were fewer dicots and more monocots than in conventional crops. At harvest, dicot biomass and seed rain in the GMHT treatment were one-third of that in the conventional, while monocot biomass was threefold greater and monocot seed rain almost fivefold greater in the GMHT treatment than in the conventional. These differential effects persisted into the following two years of the rotation. Bees and butterflies that forage and select for dicot weeds were less abundant in GMHT WOSR management in July. Year totals for Collembola were greater under GMHT management. There were few other treatment effects on invertebrates, despite the marked effects of herbicide management on the weeds.
Journal of Ecology | 2013
Jonathan Storkey; D. R. Brooks; A. J. Haughton; Cathy Hawes; B. Smith; J. M. Holland
1. The loss of farmland biodiversity threatens the sustainability of ecosystem services delivered within agricultural landscapes. The functional trait approach has been successfully used in grassland systems to quantify trade-offs and synergies between services delivered directly by plant communities. Many of the services delivered by arable landscapes, however, depend on invertebrate consumers, and the application of the trait-based approach to these systems depends on quantifying functional relationships between trophic levels. 2. Two data sets of plant and invertebrate communities from a range of annual crops and uncropped land habitats were analysed. The community-weighted means of plant functional traits were calculated for the vegetation samples and used as the explanatory variables in a multivariate analysis of plant species composition across habitats. The constrained axes scores were used in statistical models to explain the variance in associated total invertebrate abundance, phytophagous invertebrates and invertebrate numbers weighted by importance in the diet of farmland bird chicks. 3. The multivariate analysis discriminated between plant communities characterized by ruderal traits (high specific leaf area and early flowering) and those with more competitive traits. More ruderal communities also supported proportionally more invertebrates. The suite of traits included in the analysis explained a greater proportion of the variance in invertebrate abundance between uncropped habitats, as opposed to between annual crops. 4. The overlap between the plant traits that respond to disturbance (functional response traits) and those that affect the abundance of phytophagous invertebrates (functional effect traits) and the diet of farmland birds demonstrates the potential for using common functional metrics to integrate the assessment of an ecosystem service across different habitats particularly on uncropped land where intensity of disturbance is the main environmental driver. 5. Synthesis. The quantification of functional linkages between arable plants and the abundance of their associated invertebrate consumer communities is the first step in extending the trait-based approach to quantify trade-offs and synergies between ecosystem services developed in grassland systems to landscapes dominated by arable crops. However, applying the functional approach to in-crop weed communities and other service providers such as pollinators will require the incorporation of additional response and effect traits.
Biology Letters | 2006
L. G. Firbank; Peter Rothery; M. J. May; S. J. Clark; R. J. Scott; R. C. Stuart; C.W.H. Boffey; D. R. Brooks; G. T. Champion; A. J. Haughton; Cathy Hawes; Matthew S. Heard; Alan M. Dewar; Joe N. Perry; G. R. Squire
The Farm Scale Evaluations (FSEs) showed that genetically modified herbicide-tolerant (GMHT) cropping systems could influence farmland biodiversity because of their effects on weed biomass and seed production. Recently published results for winter oilseed rape showed that a switch to GMHT crops significantly affected weed seedbanks for at least 2 years after the crops were sown, potentially causing longer-term effects on other taxa. Here, we seek evidence for similar medium-term effects on weed seedbanks following spring-sown GMHT crops, using newly available data from the FSEs. Weed seedbanks following GMHT maize were significantly higher than following conventional varieties for both the first and second years, while by contrast, seedbanks following GMHT spring oilseed rape were significantly lower over this period. Seedbanks following GMHT beet were smaller than following conventional crops in the first year after the crops had been sown, but this difference was much reduced by the second year for reasons that are not clear. These new data provide important empirical evidence for longer-term effects of GMHT cropping on farmland biodiversity.
Journal of Animal Ecology | 2012
D. R. Brooks; Jonathan Storkey; S. J. Clark; L. G. Firbank; Sandrine Petit; Ian P. Woiwod
1. There is an urgent need to accurately model how environmental change affects the wide-scale functioning of ecosystems, but advances are hindered by a lack of knowledge of how trophic levels are linked across space. It is unclear which theoretical approach to take to improve modelling of such interactions, but evidence is gathering that linking species responses to their functional traits can increase understanding of ecosystem dynamics. Currently, there are no quantitative studies testing how this approach might improve models of multiple, trophically interacting species, at wide spatial scales. 2. Arable weeds play a foundational role in linking food webs, providing resources for many taxa, including carabid beetles that feed on their seeds and weed-associated invertebrate prey. Here, we model associations between weeds and carabids across farmland in Great Britain (GB), to test the hypothesis that wide-scale trophic links between these groups are structured by their species functional traits. 3. A network of c. 250 arable fields, covering four crops and most lowland areas of GB, was sampled for weed, carabid and invertebrate taxa over 3 years. Data sets of these groups were closely matched in time and space, and each contained numerous species with a range of eco-physiological traits. The consistency of trophic linkages between multiple taxa sharing functional traits was tested within multivariate and log-linear models. 4. Robust links were established between the functional traits of taxa and their trophic interactions. Autumn-germinating, small-seeded weeds were associated with smaller, spring-breeding carabids, more specialised in seed feeding, whereas spring-germinating, large-seeded weeds were associated with a range of larger, autumn-breeding omnivorous carabids. These relationships were strong and dynamic, being independent of changes in invertebrate food resources and consistent across sample dates, crops and regions of GB. 5. We conclude that, in at least one system of interacting taxa, functional traits can be used to predict consistent, wide-scale trophic links. This conceptual approach is useful for assessing how perturbations affecting lower trophic levels are ramified throughout ecosystems and could be used to assess how environmental change affects a wider range of secondary consumers.
PLOS ONE | 2016
Fiona Burns; Mark A. Eaton; Björn C. Beckmann; Tom Brereton; D. R. Brooks; Peter M. Brown; Nida Al Fulaij; T. Gent; Ian G. Henderson; David G. Noble; Mark S. Parsons; Gary D. Powney; Helen E. Roy; Peter Stroh; Kevin J. Walker; John W. Wilkinson; Simon R. Wotton; Richard D. Gregory
Action to reduce anthropogenic impact on the environment and species within it will be most effective when targeted towards activities that have the greatest impact on biodiversity. To do this effectively we need to better understand the relative importance of different activities and how they drive changes in species’ populations. Here, we present a novel, flexible framework that reviews evidence for the relative importance of these drivers of change and uses it to explain recent alterations in species’ populations. We review drivers of change across four hundred species sampled from a broad range of taxonomic groups in the UK. We found that species’ population change (~1970–2012) has been most strongly impacted by intensive management of agricultural land and by climatic change. The impact of the former was primarily deleterious, whereas the impact of climatic change to date has been more mixed. Findings were similar across the three major taxonomic groups assessed (insects, vascular plants and vertebrates). In general, the way a habitat was managed had a greater impact than changes in its extent, which accords with the relatively small changes in the areas occupied by different habitats during our study period, compared to substantial changes in habitat management. Of the drivers classified as conservation measures, low-intensity management of agricultural land and habitat creation had the greatest impact. Our framework could be used to assess the relative importance of drivers at a range of scales to better inform our policy and management decisions. Furthermore, by scoring the quality of evidence, this framework helps us identify research gaps and needs.
Proceedings of the Royal Society of London B: Biological Sciences | 2005
D. R. Brooks; S. J. Clark; Joe N. Perry; David A. Bohan; G. T. Champion; L. G. Firbank; A. J. Haughton; Cathy Hawes; Matthew S. Heard; Ian P. Woiwod
Responses of key invertebrates within Farm Scale Evaluations (FSEs) of maize reflected advantageous effects for weeds under genetically modified herbicide-tolerant (GMHT) management. Triazine herbicides constitute the main weed control in current conventional systems, but will be withdrawn under future EU guidelines. Here, we reappraise FSE data to predict effects of this withdrawal on invertebrate biodiversity under alternative management scenarios. Invertebrate indicators showed remarkably consistent and sensitive responses to weed abundance. Their numbers were consistently reduced by atrazine used prior to seedling emergence, but at reduced levels compared to similar observations for weeds. Large treatment effects were, therefore, maintained for invertebrates when comparing other conventional herbicide treatments with GMHT, despite reduced differences in weed abundance. In particular, benefits of GMHT remained under comparisons with best estimates of future conventional management without triazines. Pitfall trapped Collembola, seed-feeding carabids and a linyphiid spider followed closely trends for weeds and may, therefore, prove useful for modelling wider biodiversity effects of herbicides. Weaker responses to triazines applied later in the season, at times closer to the activity and capture of invertebrates, suggest an absence of substantial direct effects. Contrary responses for some suction-sampled Collembola and the carabid Loricera pilicornis were probably caused by a direct deleterious effect of triazines.
Science Advances | 2015
Georgina Palmer; Jane K. Hill; Tom Brereton; D. R. Brooks; Jason W. Chapman; Richard Fox; Tom H. Oliver; Chris D. Thomas
Analysis of butterfly and moth species shows that responses to climate change may be more predictable than previously recognized. The responses of animals and plants to recent climate change vary greatly from species to species, but attempts to understand this variation have met with limited success. This has led to concerns that predictions of responses are inherently uncertain because of the complexity of interacting drivers and biotic interactions. However, we show for an exemplar group of 155 Lepidoptera species that about 60% of the variation among species in their abundance trends over the past four decades can be explained by species-specific exposure and sensitivity to climate change. Distribution changes were less well predicted, but nonetheless, up to 53% of the variation was explained. We found that species vary in their overall sensitivity to climate and respond to different components of the climate despite ostensibly experiencing the same climate changes. Hence, species have undergone different levels of population “forcing” (exposure), driving variation among species in their national-scale abundance and distribution trends. We conclude that variation in species’ responses to recent climate change may be more predictable than previously recognized.
Biodiversity | 2015
Mark A. Eaton; Fiona Burns; Nick J. B. Isaac; Richard D. Gregory; Tom A. August; Tom Brereton; D. R. Brooks; Nida Al Fulaij; Karen A. Haysom; David G. Noble; Charlotte Outhwaite; Gary D. Powney; Deborah A. Procter; James Williams
We describe the development of two complementary priority species indicators (PSIs) to help the UK to report progress towards Aichi target 12 on the status of known threatened species. Based on species identified as national conservation priorities, the indicators present average changes in (i) 213 species for which trends in relative abundance are available from structured monitoring schemes, and (ii) 179 species for which trends in frequency of occurrence were modelled from data sets of unstructured biological records. Both indicators show substantial declines in priority species since 1970, of 67% and 40%, respectively, although the rate of decline in the relative abundance-based PSI may have lessened over the last five years (2007–2012). We discuss the biases and weaknesses of the indicators at present, and put forward suggestions as how these may be addressed, including through the development of a third PSI.
Science Advances | 2016
Georgina Palmer; Jane K. Hill; Tom Brereton; D. R. Brooks; Jason W. Chapman; Richard Fox; Tom H. Oliver; Chris D. Thomas
[This retracts the article on p. e1400220 in vol. 1, PMID: 26601276.].