D. R. Mikkelsen
Princeton Plasma Physics Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. R. Mikkelsen.
Physics of Plasmas | 1996
D.K. Mansfield; K. W. Hill; J. D. Strachan; M.G. Bell; Stacey D. Scott; R. V. Budny; E. S. Marmar; J. A. Snipes; J. L. Terry; S. H. Batha; R.E. Bell; M. Bitter; C. E. Bush; Z. Chang; D. S. Darrow; D. Ernst; E.D. Fredrickson; B. Grek; H. W. Herrmann; A. Janos; D. L. Jassby; F. C. Jobes; D.W. Johnson; L. C. Johnson; F. M. Levinton; D. R. Mikkelsen; D. Mueller; D. K. Owens; H. Park; A. T. Ramsey
Wall conditioning in the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire et al., Phys. Plasmas 2, 2176 (1995)] by injection of lithium pellets into the plasma has resulted in large improvements in deuterium–tritium fusion power production (up to 10.7 MW), the Lawson triple product (up to 1021 m−3 s keV), and energy confinement time (up to 330 ms). The maximum plasma current for access to high‐performance supershots has been increased from 1.9 to 2.7 MA, leading to stable operation at plasma stored energy values greater than 5 MJ. The amount of lithium on the limiter and the effectiveness of its action are maximized through (1) distributing the Li over the limiter surface by injection of four Li pellets into Ohmic plasmas of increasing major and minor radius, and (2) injection of four Li pellets into the Ohmic phase of supershot discharges before neutral‐beam heating is begun.
Nuclear Fusion | 2011
T.L. Rhodes; C. Holland; S.P. Smith; A.E. White; K.H. Burrell; J. Candy; J.C. DeBoo; E. J. Doyle; J. C. Hillesheim; J. E. Kinsey; G.R. McKee; D. R. Mikkelsen; W. A. Peebles; C. C. Petty; R. Prater; Scott E. Parker; Yang Chen; L. Schmitz; G. M. Staebler; R. E. Waltz; G. Wang; Z. Yan; L. Zeng
A series of carefully designed experiments on DIII-D have taken advantage of a broad set of turbulence and profile diagnostics to rigorously test gyrokinetic turbulence simulations. In this paper the goals, tools and experiments performed in these validation studies are reviewed and specific examples presented. It is found that predictions of transport and fluctuation levels in the mid-core region (0.4 < ρ < 0.75) are in better agreement with experiment than those in the outer region (ρ ≥ 0.75) where edge coupling effects may become increasingly important and multiscale simulations may also be necessary. Validation studies such as these are crucial in developing confidence in a first-principles based predictive capability for ITER.
Physics of Plasmas | 2008
P. W. Terry; M. Greenwald; J.‐N. Leboeuf; G.R. McKee; D. R. Mikkelsen; W. M. Nevins; David E. Newman; D. P. Stotler; Validation; U.S. Transport Task Force
Because experiment/model comparisons in magnetic confinement fusion have not yet satisfied the requirements for validation as understood broadly, approaches to validating mathematical models and numerical algorithms are recommended as good practices. Previously identified procedures, such as, verification, qualification, and analysis of errors from uncertainties and deficiencies, remain important. However, particular challenges intrinsic to fusion plasmas and physical measurement therein lead to identification of new or less familiar concepts that are also critical in validation. These include the primacy hierarchy, which tracks the integration of measurable quantities, and sensitivity analysis, which assesses how model output is apportioned to different sources of variation. The use of validation metrics for individual measurements is extended to multiple measurements, with provisions for the primacy hierarchy and sensitivity. This composite validation metric is essential for quantitatively evaluating comparisons with experiments. To mount successful and credible validation in magnetic fusion, a new culture of validation is envisaged.
Plasma Physics and Controlled Fusion | 2007
W.M. Solomon; K.H. Burrell; J.S. deGrassie; R.V. Budny; R. J. Groebner; J. E. Kinsey; G.J. Kramer; T.C. Luce; M. A. Makowski; D. R. Mikkelsen; R. Nazikian; C. C. Petty; P.A. Politzer; S Scott; M. A. Van Zeeland; M. C. Zarnstorff
Momentum confinement was investigated on DIII-D as a function of applied neutral beam torque at constant normalized beta βN, by varying the mix of co (parallel to the plasma current) and counter neutral beams. Under balanced neutral beam injection (i.e. zero total torque to the plasma), the plasma maintains a significant rotation in the co-direction. This intrinsic rotation can be modeled as being due to an offset in the applied torque (i.e. an anomalous torque). This anomalous torque appears to have a magnitude comparable to one co neutral beam source. The presence of such an anomalous torque source must be taken into account to obtain meaningful quantities describing momentum transport, such as the global momentum confinement time and local diffusivities.Studies of the mechanical angular momentum in ELMing H-mode plasmas with elevated qmin show that the momentum confinement time improves as the torque is reduced. In hybrid plasmas, the opposite effect is observed, namely that momentum confinement improves at high torque/rotation. GLF23 modeling suggests that the role of E × B shearing is quite different between the two plasmas, which may help to explain the different dependence of the momentum confinement on torque.
Nuclear Fusion | 2007
S.M. Kaye; F. M. Levinton; D. Stutman; K. Tritz; H. Yuh; M.G. Bell; R.E. Bell; C. W. Domier; D.A. Gates; W. Horton; J.‐H. Kim; Benoit P. Leblanc; N.C. Luhmann; R. Maingi; E. Mazzucato; J. Menard; D. R. Mikkelsen; D. Mueller; H. Park; G. Rewoldt; S.A. Sabbagh; David R. Smith; W. Wang
The NSTX operates at low aspect ratio (R/a ~ 1.3) and high beta (up to 40%), allowing tests of global confinement and local transport properties that have been established from higher aspect ratio devices. The NSTX plasmas are heated by up to 7 MW of deuterium neutral beams with preferential electron heating as expected for ITER. Confinement scaling studies indicate a strong BT dependence, with a current dependence that is weaker than that observed at higher aspect ratio. Dimensionless scaling experiments indicate a strong increase in confinement with decreasing collisionality and a weak degradation with beta. The increase in confinement with BT is due to reduced transport in the electron channel, while the improvement with plasma current is due to reduced transport in the ion channel related to the decrease in the neoclassical transport level. Improved electron confinement has been observed in plasmas with strong reversed magnetic shear, showing the existence of an electron internal transport barrier (eITB). The development of the eITB may be associated with a reduction in the growth of microtearing modes in the plasma core. Perturbative studies show that while L-mode plasmas with reversed magnetic shear and an eITB exhibit slow changes in across the profile after the pellet injection, H-mode plasmas with a monotonic q-profile and no eITB show no change in this parameter after pellet injection, indicating the existence of a critical gradient that may be related to the q-profile. Both linear and non-linear simulations indicate the potential importance of electron temperature gradient (ETG) modes at the lowest BT. Localized measurements of high-k fluctuations exhibit a sharp decrease in signal amplitude levels across the L–H transition, associated with a decrease in both ion and electron transport, and a decrease in calculated linear microinstability growth rates across a wide k-range, from the ion temperature gradient/TEM regime up to the ETG regime.
Physics of Plasmas | 2009
L. Lin; Miklos Porkolab; E. Edlund; J. C. Rost; C. Fiore; M. Greenwald; Y. Lin; D. R. Mikkelsen; N. Tsujii; S.J. Wukitch
Recent advances in gyrokinetic simulation of core turbulence and associated transport requires an intensified experimental effort to validate these codes using state of the art synthetic diagnostics to compare simulations with experimental data. A phase contrast imaging (PCI) diagnostic [M. Porkolab, J. C. Rost, N. Basse et al., IEEE Trans. Plasma Sci. 34, 229 (2006)] is used to study H-mode plasmas in Alcator C-Mod [M. Greenwald, D. Andelin, N. Basse et al., Nucl. Fusion 45, S109 (2005)]. The PCI system is capable of measuring density fluctuations with high temporal (2kHz–5MHz) and wavenumber (0.5–55cm−1) resolution. Recent upgrades have enabled PCI to localize the short wavelength turbulence in the electron temperature gradient range and resolve the direction of propagation (i.e., electron versus ion diamagnetic direction) of the longer wavelength turbulence in the ion temperature gradient (ITG) and trapped electron mode range. The studies focus on plasmas before and during internal transport barrier fo...
Plasma Physics and Controlled Fusion | 2009
L. Lin; Miklos Porkolab; E. Edlund; J. C. Rost; M. Greenwald; N. Tsujii; J. Candy; R E Waltz; D. R. Mikkelsen
Recent advances in gyrokinetic simulation have allowed for quantitative predictions of core turbulence and associated transport. However, numerical codes must be tested against experimental results in both turbulence and transport. In this paper, we present recent results from ohmic plasmas in the Alcator C-Mod tokamak using phase contrast imaging (PCI) diagnostic, which is capable of measuring density fluctuations with wave numbers up to 55 cm −1 . The experiments were carried out over the range of densities covering the ‘neo-Alcator’ (linear confinement time scaling with density, electron transport dominates) to the ‘saturated ohmic’ regime. We have also simulated these plasmas with the gyrokinetic code GYRO and compared numerical predictions with experimentally measured turbulence through a synthetic PCI diagnostic method. The key role played by the ion temperature gradient (ITG) turbulence has been verified, including measurements of turbulent wave propagation in the ion diamagnetic direction. It is found that the intensity of density fluctuations increases with density, in agreement between simulation and experiments. The absolute fluctuation intensity agrees with the simulation within experimental error (±60%). In the saturated ohmic regime, the simulated ion and electron thermal diffusivities also agree with experiments after varying the ion temperature gradient within experimental uncertainty. However, in the linear ohmic regime, GYRO does not agree well with experiments, showing significantly larger ion thermal transport and smaller electron thermal transport. Our study shows that although the short wavelength turbulence in the electron temperature gradient (ETG) range is unstable in the linear ohmic regime, the nonlinear simulation with kθ ρs up to 4 does not raise the electron thermal diffusivity to the experimental level, where kθ is the poloidal wavenumber and
Nuclear Fusion | 2007
Stacey D. Scott; A. Bader; M. Bakhtiari; N. Basse; W. Beck; T. M. Biewer; S. Bernabei; P.T. Bonoli; B. Böse; Ronald Bravenec; I.O. Bespamyatnov; R. Childs; I. Cziegler; R.P. Doerner; E. Edlund; D. Ernst; A. Fasoli; M. Ferrara; C. Fiore; T. Fredian; A. Graf; T. Graves; R. Granetz; N.L. Greenough; M. Greenwald; M. Grimes; O. Grulke; D. Gwinn; R. W. Harvey; S. Harrison
Alcator C-MOD has compared plasma performance with plasma-facing components (PFCs) coated with boron to all-metal PFCs to assess projections of energy confinement from current experiments to next-generation burning tokamak plasmas. Low-Z coatings reduce metallic impurity influx and diminish radiative losses leading to higher H-mode pedestal pressure that improves global energy confinement through profile stiffness. RF sheath rectification along flux tubes that intersect the RF antenna is found to be a major cause of localized boron erosion and impurity generation. Initial lower hybrid current drive (LHCD) experiments (PLH < 900?kW) in preparation for future advanced-tokamak studies have demonstrated fully non-inductive current drive at Ip ~ 1.0?MA with good efficiency, Idrive = 0.4 PLH/neoR (MA, MW, 1020?m?3,m). The potential to mitigate disruptions in ITER through massive gas-jet impurity puffing has been extended to significantly higher plasma pressures and shorter disruption times. The fraction of total plasma energy radiated increases with the Z of the impurity gas, reaching 90% for krypton. A positive major-radius scaling of the error field threshold for locked modes (Bth/B ? R0.68?0.19) is inferred from its measured variation with BT that implies a favourable threshold value for ITER. A phase contrast imaging diagnostic has been used to study the structure of Alfv?n cascades and turbulent density fluctuations in plasmas with an internal transport barrier. Understanding the mechanisms responsible for regulating the H-mode pedestal height is also crucial for projecting performance in ITER. Modelling of H-mode edge fuelling indicates high self-screening to neutrals in the pedestal and scrape-off layer (SOL), and reproduces experimental density pedestal response to changes in neutral source, including a weak variation of pedestal height and constant width. Pressure gradients in the near SOL of Ohmic L-mode plasmas are observed to scale consistently as , and show a significant dependence on X-point topology. Fast camera images of intermittent turbulent structures at the plasma edge show they travel coherently through the SOL with a broad radial velocity distribution having a peak at about 1% of the ion sound speed, in qualitative agreement with theoretical models. Fast D? diagnostics during gas puff imaging show a complex behaviour of discrete ELMs, starting with an n ? 10 precursor oscillation followed by a rapid primary ejection as the pedestal crashes and then multiple, slower secondary ejections.
Plasma Physics and Controlled Fusion | 2011
David R. Smith; W. Guttenfelder; Benoit P. Leblanc; D. R. Mikkelsen
Gyrokinetic calculations indicate microtearing modes below the ion gyroscale arelinearlyunstableinaNationalSphericalTorusExperiment(NSTX)plasma. The modes are robustly unstable with respect to simulation parameters, radial location and discharge time. The modes exist at higher wavenumbers and exhibit narrower electric potential mode structures than conventional microtearing modes, but both modes extend to similar normalized radial wavenumbers. Mode growth rates increase with higher electron temperature gradients and higher collisionality. Finally, microtearing modes below the ion gyroscale are the most unstable modes near the magnetic axis, but electron temperature gradient modes are the most unstable modes in the outer plasma region. (Some figures in this article are in colour only in the electronic version)
Physics of Plasmas | 2012
J. A. Baumgaertel; G. W. Hammett; D. R. Mikkelsen; M. Nunami; P. Xanthopoulos
X iv :1 21 0. 60 84 v1 [ ph ys ic s. pl as m -p h] 2 2 O ct 2 01 2 Gyrokinetic studies of the effect of β on drift-wave stability in NCSX J. A. Baumgaertel, G. W. Hammett, D. R. Mikkelsen, M. Nunami, and P. Xanthopoulos Los Alamos National Laboratory, Los Alamos, New Mexico 87544 Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 National Institute for Fusion Sciences, Japan Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald, GermanyThe gyrokinetic turbulence code GS2 was used to investigate the effects of plasma β on linear, collisionless ion temperature gradient (ITG) modes and trapped electron modes (TEM) in National Compact Stellarator Experiment (NCSX) geometry. Plasma β affects stability in two ways: through the equilibrium and through magnetic fluctuations. The first was studied here by comparing ITG and TEM stability in two NCSX equilibria of differing β values, revealing that the high β equilibrium was marginally more stable than the low β equilibrium in the adiabatic-electron ITG mode case. However, the high β case had a lower kinetic-electron ITG mode critical gradient. Electrostatic and electromagnetic ITG and TEM mode growth rate dependencies on temperature gradient and density gradient were qualitatively similar. The second β effect is demonstrated via electromagnetic ITG growth rates dependency on GS2s β input parameter. A linear benchmark with gyrokinetic codes GENE and GKV-X is also presented.