Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. R. Webster is active.

Publication


Featured researches published by D. R. Webster.


Journal of Fluid Mechanics | 1996

Turbulence characteristics of a boundary layer over a two-dimensional bump

D. R. Webster; David B. DeGraaff; John K. Eaton

The turbulent flow development was examined for a two-dimensional boundary layer over a bump. The upstream boundary layer had a momentum-thickness Reynolds number of approximately 4030. The ratios of upstream boundary layer thickness to bump height and convex radius of curvature were 1.5 and 0.06, respectively. The bump was defined by three tangential circular arcs, which subjected the flow to alternating signs of pressure gradient and surface curvature. The boundary layer grew rapidly on the downstream side of the bump but did not separate. The mean velocity profiles deviated significantly from the law of the wall above the bump. The change from concave to convex surface curvature near the leading edge triggered an internal boundary layer, as shown by knee points in the turbulent stress profiles. The internal layer grew rapidly away from the wall on the downstream side of the bump owing to the adverse pressure gradient. The effect of convex surface curvature was considered small since the flow behaviour was generally explained by the effects due to streamwise pressure gradient. A second internal layer was triggered by the change from convex to concave curvature near the trailing edge. The boundary layer recovered rapidly in the downstream section and approached typical flat-plate boundary layer behaviour at the last measurement location.


Physics of Fluids | 1995

Unsteady laminar flow between a pair of disks corotating in a fixed cylindrical enclosure

J. A. C. Humphrey; C. A. Schuler; D. R. Webster

The unsteady streamlined motion of a constant property fluid in the unobstructed space between a pair of disks corotating at angular velocity Ω in a fixed cylindrical enclosure is investigated numerically. Two‐dimensional (axisymmetric) and three‐dimensional calculations are performed using a second‐order accurate time‐explicit algorithm. The flow configuration corresponds to that investigated experimentally by Schuler et al. [Phys. Fluids A 2, 1760 (1990)]. The steady flow solutions are characterized by a symmetrical pair of counter‐rotating toroidal vortices in the cross‐stream (r‐z) plane. This secondary motion is driven by the radial imbalance between the outward‐directed centrifugal force and the inward‐directed pressure gradient force. Axisymmetric calculations predict a flow that is steady for Re<22 200, where Re is the Reynolds number based on the disk radius, the tip speed of the disks, and the kinematic viscosity of the fluid. Above this value the motion is unsteady periodic and, while the featu...


The Journal of Experimental Biology | 2007

Quantitative analysis of tethered and free-swimming copepodid flow fields

Kimberly B. Catton; D. R. Webster; Jason Brown; Jeannette Yen

SUMMARY We quantified the flow field generated by tethered and free-swimming Euchaeta antarctica using the particle image velocimetry (PIV) technique. The streamlines around the free-swimming specimens were generally parallel to the body axis, whereas the streamlines around all of the tethered copepodids demonstrated increased curvature. Differences noted in the streamline pattern, and hence the vorticity, dissipation rate and strain rate fields, are explained by considering the forces on the free-swimming specimen compared to the tethered specimen. Viscous flow theory demonstrates that the force on the fluid due to the presence of the tether irrevocably modifies the flow field in a manner that is consistent with the measurements. Hence, analysis of the flow field and all associated calculations differ for tethered versus free-swimming conditions. Consideration of the flow field of the free-swimming predatory copepodid shows the intensity of the biologically generated flow and the extent of the mechanoreceptive signal quantified in terms of shear strain rate. The area in the dorso-ventral view surrounded by the 0.5 s-1 contour of exy, which is a likely threshold to induce an escape response, is 11 times the area of the exoskeletal form for the free-swimming case. Thus, mechanoreceptive predators will perceive a more spatially extended signal than the body size.


Physics of Fluids | 1997

VORTEX DYNAMICS IN JETS FROM INCLINED NOZZLES

D. R. Webster; Ellen K. Longmire

Experimental tests were performed on round jets exiting inclined nozzles at a Reynolds number of 9000. Both natural jets and jets forced with single frequencies corresponding to StD=0.25, 0.5, 0.75, and 1.0 were examined. In the natural case, the nozzle incline caused a mild increase in the radial spreading in the plane of azimuthal symmetry. The forcing amplified the asymmetric radial spreading by altering the vortex structure. In general, the inclined vortex rings rolled up at an angle slightly smaller than the nozzle incline angle. As the rings moved downstream, they migrated away from the jet centerline and their incline angle increased. Vortex rings generated at StD=0.5 did not pair because that Strouhal number was near the “preferred” mode. For nozzles with slight inclines, forcing at larger Strouhal numbers led to pairing near x/D=2 in order to achieve the “preferred” mode. For nozzles with larger inclines, the vortex cores broke down before pairing could occur. Forcing at a lower Strouhal number (...


Environmental Fluid Mechanics | 2002

A Multidisciplinary Study of Spatial and Temporal Scales Containing Information in Turbulent Chemical Plume Tracking

M.J. Weissburg; D.B. Dusenbery; Hiroshi Ishida; Jiri Janata; T. Keller; Philip J. W. Roberts; D. R. Webster

This report describes the results of a multidisciplinary study of turbulent chemical plume tracking of blue crabs and autonomous agents. The study consists of a coordinated investigation of animal behavior, fluid mechanics, strategy simulations, and chemical sensing. The objective is to provide a comprehensive understanding of chemical plume tracking in a single biological system and to prescribe strategies that are effective for autonomous agents. The consensus of the study is that spatial variation in the plume, measured by sampling at multiple locations simultaneously, yields information that is useful for plume tracking. Behavioral investigations reveal that blue crabs demonstrate the ability to detect the chemical plume and use lateral movements to avoid losing contact with the odor. Blue crabs move rapidly towards the source, strongly suggesting that temporal comparisons of odor properties are not employed during navigation. Analysis of the concentration fields reveals that a spatial correlation between spanwise-separated sensors indicates the relative direction of the plume centerline over short time periods provided the sensor spacing is scaled appropriately relative to the plume. Similarly, simulations of tracking strategies reveal an optimal separation for the sensors at a distance roughly equal to the plume width; both smaller and larger sensor spans degrade tracking performance. The simulations further reveal an optimal sensor size above which the fine details of the concentration distribution are obscured and below which there is insufficient contact with the odor to enable effective navigation. Finally, analysis of the chemical signal shows that the frequency dependent correlation function between two (or more) sensors indicates the relative position of the source.


Physics of Fluids | 1998

Vortex rings from cylinders with inclined exits

D. R. Webster; Ellen K. Longmire

A typical experimental vortex generator was perturbed by inclining the exit orifice. Instantaneous velocity fields were measured with particle image velocimetry at a Reynolds number, Γ0/ν, of 2800, which falls in the laminar regime for the axisymmetric case. Despite the nearly uniform velocity of the axisymmetric piston, the velocity exiting the cylinder is spatially and temporally non-uniform. Specifically, the exit velocity and the entrainment are larger on the short cylinder side. This fluid motion leads to an initial vortex roll-up with maximum and minimum circulation at the shortest and longest cylinder locations, respectively. A highly complex vortex structure forms, consisting of a primary vortex ring with varying circulation and branched vortex tubes that initially extend from the primary ring upstream toward the cylinder. The variation of the circulation in the primary ring and the strength of the branched vortex tubes increase with incline angle. The branched vortex tubes induce a strong cross-s...


The Journal of Experimental Biology | 2003

Fluid mechanics produces conflicting, constraints during olfactory navigation of blue crabs, Callinectes sapidus.

C. P. James; D. L. Smee; D. R. Webster

SUMMARY Foraging blue crabs must respond to fluid forces imposed on their body while acquiring useful chemical signals from turbulent odor plumes. This study examines how blue crabs manage these simultaneous demands. The drag force, and hence the cost of locomotion, experienced by blue crabs is shown to be a function of the body orientation angle relative to the flow. Rather than adopting a fixed orientation that minimizes the drag, blue crabs decrease their relative angle (increase drag) when odor is present in low speed flow, while assuming a drag-minimizing posture under other conditions. The motivation for crabs to adopt an orientation with larger drag appears to relate to their ability to acquire chemical signal information for odor tracking. In particular, when orienting at a smaller angle relative to the flow direction, more concentrated odor filaments arrive at the antennules to mediate upstream movement, allowing a more useful bilateral comparison between the appendage chemosensors to be made. Blue crabs respond to conflicting demands by weighting the degree of drag minimization in proportion to the potential magnitude of the drag cost and the potential benefit of acquiring chemosensory cues. Higher flow velocity magnifies the locomotory cost of a high drag posture, thus in swift flows crabs minimize drag and sacrifice their ability to acquire olfactory cues.


Marine and Freshwater Behaviour and Physiology | 2003

Analysis of the flow field of the krill, Euphausia pacifica

Jeannette Yen; Jason Brown; D. R. Webster

Velocity measurements were performed for the flow field generated by tethered krill Euphausia pacifica. The particle image velocimetry (PIV) technique was used to measure the velocity field in vertical planes aligned with the krill body axis. The krill generates a narrow jet-like flow behind and below the pleopods (roughly 25° below horizontal). The volume of fluid moving at greater than 10% of the maximum velocity near the pleopods is roughly 18 times larger than the volume of the krill. Thus, the hydrodynamic disturbance occupies a significantly larger region than the animal body. Other krill, sensing the flow disturbance, may take advantage of the flow induced by a neighbor to locate a mate or to draft for efficient propulsion.


The Journal of Experimental Biology | 2011

Getting ahead: context-dependent responses to odorant filaments drive along-stream progress during odor tracking in blue crabs

Jennifer L. Page; Brian D. Dickman; D. R. Webster

SUMMARY The chemosensory signal structure governing the upstream progress of blue crabs to an odorant source was examined. We used a three-dimensional laser-induced fluorescence system to collect chemical concentration data simultaneously with behavior observations of actively tracking blue crabs (Callinectes sapidus) in a variety of plume types. This allowed us to directly link chemical signal properties at the antennules and legs to subsequent upstream motion while altering the spatial and temporal intermittency characteristics of the sensory field. Our results suggest that odorant stimuli elicit responses in a binary fashion by causing upstream motion, provided the concentration at the antennules exceeds a specific threshold. In particular, we observed a significant association between crab velocity changes and odorant spike encounters defined using a threshold that is scaled to the mean of the instantaneous maximum concentration. Thresholds were different for each crab, indicating a context-sensitive response to signal dynamics. Our data also indicate that high frequency of odorant spike encounters terminate upstream movement. Further, the data provide evidence that the previous state of the crab and prior stimulus history influence the behavioral response (i.e. the response is context dependent). Two examples are: (1) crabs receiving prior odorant spikes attained elevated velocity more quickly in response to subsequent spikes; and (2) prior acceleration or deceleration of the crab influenced the response time period to a particular odorant spike. Finally, information from both leg and antennule chemosensors interact, suggesting parallel processing of odorant spike properties during navigation.


Integrative and Comparative Biology | 2007

The prevalence and implications of copepod behavioral responses to oceanographic gradients and biological patchiness

C. Brock Woodson; D. R. Webster; Jeannette Yen

Several species and developmental stages of calanoid copepods were tested for responses to environmental cues in a laboratory apparatus that mimicked conditions commonly associated with patches of food in the ocean. All species responded to the presence of phytoplankton by feeding. All species responded by increasing proportional residence time in one, but not both, of the treatments defined by gradients of velocity or density. Most species increased swimming speed and frequency of turning in response to the presence of chemical exudates or gradients of velocity. Only one species, Eurytemora affinis, increased proportional time of residence in response to gradients in density of the water. Responses of E. affinis to combined cues did not definitively demonstrate a hierarchical use of different cues as previously observed for Temora longicornis and Acartia tonsa. A simple foraging simulation was developed to assess the applicability in the field of the behavioral results observed in the laboratory. These simulations suggest that observed fine-scale behaviors could lead to copepod aggregations observed in situ. The present study demonstrates that behavioral response to cues associated with fine-scale oceanographic gradients and biological patchiness is functionally important and prevalent among copepods and likely has significant impacts on larger-scale distributional patterns.

Collaboration


Dive into the D. R. Webster's collaboration.

Top Co-Authors

Avatar

Jeannette Yen

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David Murphy

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Rahman

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deepak Adhikari

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Brian D. Dickman

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge