Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. R. Worsnop is active.

Publication


Featured researches published by D. R. Worsnop.


Geophysical Research Letters | 2007

Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes

Qiu Zhang; Jose L. Jimenez; Manjula R. Canagaratna; J. D. Allan; Hugh Coe; Ingrid M. Ulbrich; M. R. Alfarra; Akinori Takami; Ann M. Middlebrook; Yele Sun; Katja Dzepina; E. J. Dunlea; Kenneth S. Docherty; P. F. DeCarlo; Dara Salcedo; Timothy B. Onasch; John T. Jayne; T. Miyoshi; Akio Shimono; Shiro Hatakeyama; N. Takegawa; Yutaka Kondo; Johannes Schneider; Frank Drewnick; S. Borrmann; Silke Weimer; Kenneth L. Demerjian; Paul Williams; Keith N. Bower; Roya Bahreini

[1] Organic aerosol (OA) data acquired by the Aerosol Mass Spectrometer (AMS) in 37 field campaigns were deconvolved into hydrocarbon-like OA (HOA) and several types of oxygenated OA (OOA) components. HOA has been linked to primary combustion emissions (mainly from fossil fuel) and other primary sources such as meat cooking. OOA is ubiquitous in various atmospheric environments, on average accounting for 64%, 83% and 95% of the total OA in urban, urban downwind, and rural/remote sites, respectively. A case study analysis of a rural site shows that the OOA concentration is much greater than the advected HOA, indicating that HOA oxidation is not an important source of OOA, and that OOA increases are mainly due to SOA. Most global models lack an explicit representation of SOA which may lead to significant biases in the magnitude, spatial and temporal distributions of OA, and in aerosol hygroscopic properties.


Aerosol Science and Technology | 2011

An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol

Nga L. Ng; Scott C. Herndon; A. Trimborn; Manjula R. Canagaratna; Philip Croteau; Timothy B. Onasch; Donna Sueper; D. R. Worsnop; Qi Zhang; Yele Sun; John T. Jayne

We present a new instrument, the Aerosol Chemical Speciation Monitor (ACSM), which routinely characterizes and monitors the mass and chemical composition of non-refractory submicron particulate matter in real time. Under ambient conditions, mass concentrations of particulate organics, sulfate, nitrate, ammonium, and chloride are obtained with a detection limit <0.2 μg/m3 for 30 min of signal averaging. The ACSM is built upon the same technology as the widely used Aerodyne Aerosol Mass Spectrometer (AMS), in which an aerodynamic particle focusing lens is combined with high vacuum thermal particle vaporization, electron impact ionization, and mass spectrometry. Modifications in the ACSM design, however, allow it to be smaller, lower cost, and simpler to operate than the AMS. The ACSM is also capable of routine stable operation for long periods of time (months). Results from a field measurement campaign in Queens, NY where the ACSM operated unattended and continuously for 8 weeks, are presented. ACSM data is analyzed with the same well-developed techniques that are used for the AMS. Trends in the ACSM mass concentrations observed during the Queens, NY study compare well with those from co-located instruments. Positive Matrix Factorization (PMF) of the ACSM organic aerosol spectra extracts two components: hydrocarbon-like organic aerosol (HOA) and oxygenated organic aerosol (OOA). The mass spectra and time trends of both components correlate well with PMF results obtained from a co-located high resolution time-of-flight AMS instrument.


Environmental Science & Technology | 2011

Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol Mass Spectrometer Data

Nga L. Ng; Manjula R. Canagaratna; Jose L. Jimenez; Qiu Zhang; Ingrid M. Ulbrich; D. R. Worsnop

We use results from positive matrix factorization (PMF) analysis of 15 urban aerosol mass spectrometer (AMS) data sets to derive simple methods for estimating major organic aerosol (OA) component concentrations in real time. PMF analysis extracts mass spectral (MS) profiles and mass concentrations for key OA components such as hydrocarbon-like OA (HOA), oxygenated OA (OOA), low-volatility OOA (LV-OOA), semivolatile OOA (SV-OOA), and biomass burning OA (BBOA). The variability in the component MS across all sites is characterized and used to derive standard profiles for real-time estimation of component concentrations. Two methods for obtaining first-order estimates of the HOA and OOA mass concentrations are evaluated. The first approach is the tracer m/z method, in which the HOA and OOA concentrations are estimated from m/z 57 and m/z 44 as follows: HOA ∼ 13.4 × (C(57) - 0.1 × C(44)) and OOA ∼ 6.6 × C(44), where C(i) is the equivalent mass concentration of tracer ion m/z i. The second approach uses a chemical mass balance (CMB) method in which standard HOA and OOA profiles are used as a priori information for calculating their mass concentrations. The HOA and OOA mass concentrations obtained from the first-order estimates are evaluated by comparing with the corresponding PMF results for each site. Both methods reproduce the HOA and OOA concentrations to within ∼30% of the results from detailed PMF analysis at most sites, with the CMB method being slightly better. For hybrid CMB methods, we find that fixing the LV-OOA spectrum and not constraining the other spectra produces the best results.


Aerosol Science and Technology | 2005

Design, modeling, optimization, and experimental tests of a particle beam width probe for the aerodyne aerosol mass spectrometer

J. A. Huffman; John T. Jayne; Frank Drewnick; A. C. Aiken; Timothy B. Onasch; D. R. Worsnop; Jose L. Jimenez

Aerodynamic lens inlets have revolutionized aerosol mass spectrometry by allowing the introduction of a very narrow particle beam into a vacuum chamber for subsequent analysis. The real-time measurement of particle beam width after an aerodynamic lens is of interest for two reasons: (1) it allows a correction to be made to the measured particle concentration if the beam is so broad, due to poor focusing by non-spherical particles, that some particles miss the detection system; and (2) under constant lens pressure it can provide a surrogate particle non-sphericity measurement. For these reasons, a beam width probe (BWP) has been designed and implemented for the Aerodyne Aerosol Mass Spectrometer (AMS), although this approach is also applicable to other instruments that use aerodynamic lens inlets. The probe implemented here consists of a thin vertical wire that can be precisely positioned to partially block the particle beam at fixed horizontal locations in order to map out the width of the particle beam. A computer model was developed to optimize the BWP and interpret its experimental data. Model assumptions were found to be reasonably accurate for all laboratory-generated particle types to which the model was compared. Comparisons of particle beam width data from a number of publications are also shown here. Particle losses due to beam broadening are found to be minor for the AMS for both laboratory and ambient particles. The model was then used to optimize the choice of the BWP dimensions, and to guide its use during continuous operation. A wire diameter approximately 1.55 times larger than the beam width to be measured provides near optimal sensitivity toward both collection efficiency and surrogate non-sphericity information. Wire diameters of 0.62 mm and 0.44 mm (for the AMS “long” and “short” chambers, respectively) provide reasonable sensitivity over the expected range of particle beam widths, for both spherical and non-spherical particles. Three other alternative BWP geometries were also modeled and discussed.


Aerosol Science and Technology | 2012

Soot Particle Aerosol Mass Spectrometer: Development, Validation, and Initial Application

Timothy B. Onasch; A. Trimborn; Edward Charles Fortner; John T. Jayne; Gregory L. Kok; Leah R. Williams; P. Davidovits; D. R. Worsnop

The Soot Particle Aerosol Mass Spectrometer (SP-AMS) was developed to measure the chemical and physical properties of particles containing refractory black carbon (rBC). The SP-AMS is an Aerodyne Aerosol Mass Spectrometer (AMS) equipped with an intracavity laser vaporizer (1064 nm) based on the Single Particle Soot Photometer (SP2) design, in addition to the resistively heated, tungsten vaporizer used in a standard AMS. The SP-AMS can be operated with the laser vaporizer alone, with both the laser and tungsten vaporizers, or with the tungsten vaporizer alone. When operating with only the laser vaporizer, the SP-AMS is selectively sensitive to laser-light absorbing particles, such as ambient rBC-containing particles as well as metal nanoparticles, and measures both the refractory and nonrefractory components. When operated with both vaporizers and modulating the laser on and off, the instrument measures the refractory components of absorbing particles and the nonrefractory particulate matter of all sampled particles. The SP-AMS design, mass spectral interpretation, calibration, and sensitivity are described. Instrument calibrations yield a sensitivity of greater than 140 carbon ions detected per picogram of rBC mass sampled, a 3σ detection limit of less than 0.1 μg·m−3 for 60 s averaging, and a mass-specific ionization efficiency relative to particulate nitrate of 0.2 ± 0.1. Sensitivities were found to vary depending upon laser-particle beam overlap. The utility of the instrument to characterize ambient rBC aerosol is demonstrated. Copyright 2012 American Association for Aerosol Research


Aerosol Science and Technology | 2005

Characterization of an Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with other aerosol instruments

N. Takegawa; Yuzo Miyazaki; Yutaka Kondo; Yuichi Komazaki; Takuma Miyakawa; Jose L. Jimenez; John T. Jayne; D. R. Worsnop; J. D. Allan; Rodney J. Weber

The Aerodyne Aerosol Mass Spectrometer (AMS) provides size-resolved chemical composition of non-refractory (vaporized at 600°C under vacuum) submicron aerosols with a time resolution of the order of minutes. Ambient measurements were performed in Tokyo between February 2003 and February 2004. We present intercomparisons of the AMS with a Particle-Into-Liquid Sampler combined with an Ion Chromatography analyzer (PILS-IC) and a Sunset Laboratory semi-continuous thermal-optical carbon analyzer. The temperature of the AMS inlet manifold was maintained at > 10 ˆ C above the ambient dew point to dry particles in the sample air (relative humidity (RH) in the inlet < 53%). Assuming a particle collection efficiency of 0.5 for the AMS, the mass concentrations of inorganic species (nitrate, sulfate, chloride, and ammonium) measured by the AMS agree with those measured by the PILS-IC to within 26%. The mass concentrations of organic compounds measured by the AMS correlate well with organic carbon (OC) mass measured by the Sunset Laboratory carbon analyzer (r 2 = 0.67–0.83). Assuming the same collection efficiency of 0.5 for the AMS organics, the linear regression slope is found to be 1.8 in summer and 1.6 in fall. These values are consistent with expected ratios of organic matter (OM) to OC in urban air.


Geophysical Research Letters | 2005

Impact of particulate organic matter on the relative humidity dependence of light scattering: A simplified parameterization

Patricia K. Quinn; T. S. Bates; Tahllee Baynard; Antony D. Clarke; Timothy B. Onasch; Wei Wang; Mark J. Rood; E. Andrews; J. D. Allan; Christian M. Carrico; D. J. Coffman; D. R. Worsnop

[1] Measurementsduringrecentfieldcampaignsdownwind of the Indian subcontinent, Asia, and the northeastern United States reveal a substantial decrease in the relative humidity dependence of light scattering, fssp(RH), with increasing mass fraction of particulate organic matter (POM) for submicrometer aerosol. Using data from INDOEX (INDian Ocean EXperiment), ACE Asia (Aerosol Characterization Experiment – Asia), and ICARTT (International Consortium for Atmospheric Research on Transport and Transformation), we have identified, within measurement limitations, the impact of POM on the fssp(RH) of accumulation mode sulfate-POM mixtures. The result is a parameterization that quantifies the POM mass fraction - fssp(RH) relationship for use in radiative transfer and air quality models either as input or as validation. The parameterization is valid where the aerosol consists of an internally mixed sulfatecarbonaceous accumulation mode and other externally mixed components (e.g. sea salt, dust) and is applicable on both global and regional scales. Citation: Quinn, P. K., et al. (2005), Impact of particulate organic matter on the relative humidity dependence of light scattering: A simplified parameterization, Geophys. Res. Lett., 32, L22809, doi:10.1029/ 2005GL024322.


Geophysical Research Letters | 2002

Kinetics of submicron oleic acid aerosols with ozone: A novel aerosol mass spectrometric technique

James W. Morris; P. Davidovits; John T. Jayne; Jose L. Jimenez; Q. Shi; Charles E. Kolb; D. R. Worsnop; W. S. Barney; Glen R. Cass

The reaction kinetics of submicron oleic (9-octadecanoic (Z)-) acid aerosols with ozone was studied using a novel aerosol mass spectrometric technique. In the apparatus a flow of size-selected aerosols is introduced into a flow reactor where the particles are exposed to a known density of ozone for a controlled period of time. The aerosol flow is then directed into an aerosol mass spectrometer for particle size and composition analyses. Data from these studies were used to: (a) quantitatively model the size-dependent kinetics process, (b) determine the aerosol size change due to uptake of ozone, (c) assess reaction stoichiometry, and (d) obtain qualitative information about the volatility of the reaction products. The reactive uptake probability for ozone on oleic acid particles obtained from modeling is 1.6 (±0.2) × 10^(−3) with an upper limit for the reacto-diffusive length of ∼10 nm. Atmospheric implications of the results are discussed.


Journal of Geophysical Research | 2007

Regional variation of organic functional groups in aerosol particles on four U.S. east coast platforms during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign

S. Gilardoni; Lynn M. Russell; Armin Sorooshian; John H. Seinfeld; T. S. Bates; Patricia K. Quinn; J. D. Allan; Brent J. Williams; Allen H. Goldstein; Timothy B. Onasch; D. R. Worsnop

Submicron atmospheric aerosol samples were collected during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) 2004 campaign on four platforms: Chebogue Point (Nova Scotia, Canada), Appledore Island (Maine), the CIRPAS Twin Otter over Ohio, and the NOAA R/V Ronald H. Brown in the Gulf of Maine. Saturated aliphatic C-C-H, unsaturated aliphatic C=C−H, aromatic C=C−H, organosulfur C-O-S, carbonyl C=O, and organic hydroxyl C-OH functional groups were measured by calibrated Fourier Transform Infrared (FTIR) spectroscopy at all four sampling platforms. The ratio of molar concentrations of carbonyl C=O to saturated aliphatic C-C-H groups was nearly constant at each sampling platform, with the Twin Otter samples having the lowest ratio at 0.1 and the three more coastal platforms having ratios of 0.4 and 0.5. Organic mass (OM) to organic carbon (OC) ratios follow similar trends for the four platforms, with the Twin Otter having the lowest ratio of 1.4 and the coastal platforms having slightly higher values typically between 1.5 and 1.6. Organosulfur compounds were occasionally observed. Collocated organic aerosol sampling with two Aerodyne aerosol mass spectrometers for OM, a Sunset Laboratory thermo-optical analysis instrument for OC, and an ion chromatography-particle into liquid sampler (IC-PILS) for speciated carboxylic acids provided comparable results for most of the project, tracking the time series of FTIR OM, OC, and carbonyl groups, respectively, and showing simultaneous peaks of similar magnitude during most of the project. The FTIR/IC-PILS comparison suggests that about 9% of the carbonyl groups found in submicron organic particles on the Twin Otter are typically associated with low molecular weight carboxylic acids.


Annual Review of Physical Chemistry | 2014

Chemistry of Atmospheric Nucleation: On the Recent Advances on Precursor Characterization and Atmospheric Cluster Composition in Connection with Atmospheric New Particle Formation

Markku Kulmala; Tuukka Petäjä; Mikael Ehn; Joel A. Thornton; Mikko Sipilä; D. R. Worsnop; V.-M. Kerminen

The recent development in measurement techniques and theoretical understanding has enabled us to study atmospheric vapor, cluster and nanoparticle concentrations, dynamics, and their connection to atmospheric nucleation. Here we present a summary of the chemistry of atmospheric clustering, growing nanoparticles, and their precursors. In this work, we focus particularly on atmospheric gas-to-particle conversion and recent progress in its understanding.

Collaboration


Dive into the D. R. Worsnop's collaboration.

Top Co-Authors

Avatar

John T. Jayne

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manjula R. Canagaratna

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Jose L. Jimenez

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Markku Kulmala

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. D. Allan

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Mikael Ehn

University of Helsinki

View shared research outputs
Researchain Logo
Decentralizing Knowledge