D. Rached
SIDI
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Rached.
Journal of The Mechanical Behavior of Biomedical Materials | 2014
Zine Elabidine Biskri; Habib Rached; Merzoug Bouchear; D. Rached
The objective of this study is to investigate theoretically the structural, elastic and electronic properties of Lithium Disilicate (LD) crystal (Li2Si2O5), using the pseudo potential method based on Density Functional Theory (DFT) with the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA). The calculated structural properties namely the equilibrium lattice parameters and cell volume are in good agreement with the available experimental results. However, for the LD crystal elastic moduli: Shear modulus G, Youngs modulus E and Poissons ratio ν we have found a discrepancy between our theoretical values and experimental ones reported in polycrystalline sample containing LD crystals. The calculated elastic properties show that LD is more rigid compared with other components. We also investigated the mechanical stability of Li2Si2O5 compound and we have noticed that this compound is stable against elastic deformations. On the basis of shear to bulk modulus ratio analysis, we inferred that Li2Si2O5 compound is brittle in nature. In order to complete the fundamental characteristics of this compound we have measured the elastic anisotropy. Our results for the energy band structure and Density of States (DOS) show that Li2Si2O5 compound has an insulator characteristic.
Chinese Physics B | 2014
T. Djaafri; A. Djaafri; A. Elias; G. Murtaza; R. Khenata; R. Ahmed; S. Bin Omran; D. Rached
First-principles spin-polarized density functional theory (DFT) investigations of the structural, electronic, magnetic, and thermodynamics characteristics of the half-Heusler, CoMnTe and RuMnTe compounds are carried out. Calculations are accomplished within a state of the art full-potential (FP) linearized (L) augmented plane wave plus a local orbital (APW + lo) computational approach framed within DFT. The generalized gradient approximation (GGA) parameterized by Perdew, Burke, and Ernzerhof (PBE) is implemented as an exchange correlation functional as a part of the total energy calculation. From the analysis of the calculated electronic band structure as well as the density of states for both compounds, a strong hybridization between d states of the higher valent transition metal (TM) atoms (Co, Ru) and lower valent TM atoms of (Mn) is observed. Furthermore, total and partial density of states (PDOS) of the ground state and the results of spin magnetic moments reveal that these compounds are both stable and ideal half-metallic ferromagnetic. The effects of the unit cell volume on the magnetic properties and half-metallicity are crucial. It is worth noting that our computed results of the total spin magnetic moments, for CoMnTe equal to 4 μB and 3 μB per unit cell for RuMnTe, nicely follow the rule μtot = Zt − 18. Using the quasi-harmonic Debye model, which considers the phononic effects, the effecs of pressure P and temperature T on the lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature, and heat capacity for these compounds are investigated for the first time.
International Journal of Modern Physics B | 2014
M. El; Amine Monir; H. Baltache; Ghulam Murtaza; R. Khenata; S. Bin Omran; S. Benalia; D. Rached; Saudi Arabia
The full potential linearized augmented plane wave method within the framework of density functional theory (DFT) is employed to investigate the structural, magnetic, electronic and optical properties of Ti-doped ZnTe and CdTe in the zinc blende phase. In this approach the local spin density approximation (LSDA) is used for the exchangecorrelation (XC) potential. Results are provided for the lattice constant, bulk modulus, pressure derivative, magnetic moment, band structure, density of states and refractive indices. Our results are compared with other theoretical works and good agreement is shown.
Modern Physics Letters B | 2011
N. Benayad; D. Rached; R. Khenata; F. Litimein; A.H. Reshak; M. Rabah; H. Baltache
The structural, elastic and electronic properties of Ti2InC and Ti2InN compounds have been calculated using the full-potential linear muffin-tin orbital (FP-LMTO) method. The exchange and correlation potential is treated by the local density approximation (LDA). The calculated ground state properties, including, lattice constants, internal parameters, bulk modulus and the pressure derivative of the bulk modulus are in reasonable agreement with the available data. The effect of pressure, up to 40 GPa, on the lattice constants and the internal parameters is also investigated. Using the total energy-strain technique, we have determined the elastic constants Cij, which have not been measured yet. The band structure and the density of states (DOS) show that both materials have a metallic character and Ti2InN is more conducting than Ti2InC. The analysis of the site and momentum projected densities shows that the bonding is achieved through a hybridization of Ti-atom d states with C (N)-atom p states. Otherwise, it has been shown that Ti–C and Ti–N bonds are stronger than Ti–In bonds.
Journal of Electronic Materials | 2016
Z. E. Biskri; H. Rached; M. Bouchear; D. Rached; M. S. Aida
The aim of this paper is a comparative study of structural stability and mechanical and optical properties of fluorapatite (FA) (Ca5(PO4)3F) and lithium disilicate (LD) (Li2Si2O5), using the first principles pseudopotential method based on density functional theory (DFT) within the generalized gradient approximation (GGA). The stability of fluorapatite and lithium disilicate compounds has been evaluated on the basis of their formation enthalpies. The results show that fluorapatite is more energetically stable than lithium disilicate. The independent elastic constants and related mechanical properties, including bulk modulus (B), shear modulus (G), Young’s modulus (E) and Poisson’s ratio (ν) as well as the Vickers hardness (Hv), have been calculated for fluorapatite compound and compared with other theoretical and experimental results. The obtained values of the shear modulus, Young’s modulus and Vickers hardness are smaller in comparison with those of lithium disilicate compound, implying that lithium disilicate is more rigid than fluorapatite. The brittle and ductile properties were also discussed using B/G ratio and Poisson’s ratio. Optical properties such as refractive index n(ω), extinction coefficient k(ω), absorption coefficient α(ω) and optical reflectivity R(ω) have been determined from the calculations of the complex dielectric function ε(ω), and interpreted on the basis of the electronic structures of both compounds. The calculated values of static dielectric constant ε1(0) and static refractive index n(0) show that the Li2Si2O5 compound has larger values compared to those of the Ca5(PO4)3F compound. The results of the extinction coefficient show that Li2Si2O5 compound exhibits a much stronger ultraviolet absorption. According to the absorption and reflectivity spectra, we inferred that both compounds are theoretically the best visible and infrared transparent materials.
International Journal of Modern Physics B | 2014
M. Ould Kada; T. Seddik; A. Sayede; R. Khenata; A. Bouhemadou; E. Deligoz; Z.A. Alahmed; S. Bin Omran; D. Rached
Structural, electronic, elastic and thermodynamic properties of Rh3X(X = Zr, Nb, Ta) intermetallic compounds are investigated in the framework of density functional theory (DFT). The exchange-correlation (XC) potential is treated with the generalized gradient approximation (GGA) and local density approximation (LDA). The computed ground state properties agree well with the available theoretical and experimental values. The elastic constants are obtained by calculating the total energy versus volume conserving strains using Mehl model. The electronic and bonding properties are discussed from the calculations of band structures (BSs), densities of states and electron charge densities. The volume and bulk modulus at high pressure and temperature are investigated. Additionally, thermodynamic properties such as the heat capacity, thermal expansion and Debye temperature at high pressures and temperatures are also analyzed.
Journal of Electronic Materials | 2017
H. Benmhidi; H. Rached; D. Rached; M. Benkabou
The aim of this work is to investigate the electronic, mechanical, and transport properties of the fluoroperovskite compound LiBeF3 by first-principles calculations using the full-potential linear muffin-tin orbital method based on density functional theory within the local density approximation. The independent elastic constants and related mechanical properties including the bulk modulus (B), shear modulus (G), Young’s modulus (E), and Poisson’s ratio (ν) have been studied, yielding the elastic moduli, shear wave velocities, and Debye temperature. According to the electronic properties, this compound is an indirect-bandgap material, in good agreement with available theoretical data. The electron effective mass, hole effective mass, and energy bandgaps with their volume and pressure dependence are investigated for the first time.
International Journal of Modern Physics B | 2013
F. Semari; T. Ouahrani; H. Khachai; R. Khenata; M. Rabah; A. Bouhemadou; G. Murtaza; B. Amin; D. Rached
Bonding nature as well as structural, optoelectronic and thermal properties of the cubic XMg2O4(X = Si, Ge) spinel compounds have been calculated using a full-potential augmented plane-wave plus local orbitals (FP-APW+lo) method within the density functional theory. The exchange-correlation potential was treated with the PBE-GGA approximation to calculate the total energy. Moreover, the modified Becke–Johnson potential (TB-mBJ) was also applied to improve the electronic band structure calculations. The computed ground-state parameters (a, B, B′ and u) are in excellent agreements with the available theoretical data. Calculations of the electronic band structure and bonding properties show that these compounds have a direct energy band gap (Γ-Γ) with a dominated ionic character and the TB-mBJ approximation yields larger fundamental band gaps compared to those obtained using the PBE-GGA. Optical properties such as the complex dielectric function e(ω), reflectivity R(ω) and energy loss function L(ω), for incident photon energy up to 40 eV, have been predicted. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the effects of pressure P and temperature T on the thermal expansion coefficient, Debye temperature and heat capacity for the considered compounds are investigated for the first time.
Phase Transitions | 2011
H. Rached; D. Rached; R. Khenata; S. Benalia; M. Rabah; F. Semari; H. Righi
We theoretically study the structural, elastic, and electronic properties as well as the pressure induced solid–solid phase transitions of iridium mononitride (IrN) by using the full potential linear muffin-tin orbital method with the local density approximation as exchange and correlation functional. Six different crystal structures; the zinc-blende (B3), rock salt (B1), wurtzite (B4), NiAs (B81), CsCl (B2), and the tungsten carbide (Bh) have been considered. The transition pressures at which IrN undergoes the structural phase transition from (B3) to (B81), (B1), (Bh), and (B2) phases are calculated. The elastic constants of IrN in its different structures are determined by using the total energy variation with strain technique. The ductility mechanism is discussed via the calculated elastic constants Cij . The Debye temperature of this compound in its stable (B3) phase is estimated from the average sound velocity. Band structure reveals that this compound has a metallic character. The obtained results classified IrN as superhard material in its (B3) phase. To our knowledge this is the first quantitative theoretical prediction of the elastic and high-pressure properties for this compound and still awaits experimental confirmations.
Materials Science-poland | 2016
M.H. Elahmar; H. Rached; D. Rached; S. Benalia; R. Khenata; Z.E. Biskri; S. Bin Omran
Abstract We investigated the structural stability as well as the mechanical, electronic and magnetic properties of the Full-Heusler alloy CoNiMnSi using the full-potential linearized augmented plane wave (FP-LAPW) method. Two generalized gradient approximations (GGA and GGA + U) were used to treat the exchange-correlation energy functional. The ground state properties of CoNiMnSi including the lattice parameter and bulk modulus were calculated. The elastic constants (Cij) and their related elastic moduli as well as the thermodynamic properties for CoNiMnSi have been calculated for the first time. The existence of half-metallic ferromagnetism (HM-FM) in this material is apparent from its band structure. Our results classify CoNiMnSi as a new HM-FM material with high spin polarization suitable for spintronic applications.