D. Ransom Hardison
National Oceanic and Atmospheric Administration
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Ransom Hardison.
Journal of Phycology | 2012
D. Ransom Hardison; William G. Sunda; R. Wayne Litaker; Damian Shea; Patricia A. Tester
Laboratory and field measurements of the toxin content in Karenia brevis cells vary by >4‐fold. These differences have been largely attributed to genotypic variations in toxin production among strains. We hypothesized that nutrient limitation of growth rate is equally or more important in controlling the toxicity of K. brevis, as has been documented for other toxic algae. To test this hypothesis, we measured cellular growth rate, chlorophyll a, cellular carbon and nitrogen, cell volume, and brevetoxins in four strains of K. brevis grown in nutrient‐replete and nitrogen (N)‐limited semi‐continuous cultures. N‐limitation resulted in reductions of chlorophyll a, growth rate, volume per cell and nirtogen:carbon (N:C) ratios as well as a two‐fold increase (1%–4% to 5%–9%) in the percentage of cellular carbon present as brevetoxins. The increase in cellular brevetoxin concentrations was consistent among genetically distinct strains. Normalizing brevetoxins to cellular volume instead of per cell eliminated much of the commonly reported toxin variability among strains. These results suggest that genetically linked differences in cellular volume may affect the toxin content of K. brevis cells as much or more than innate genotypic differences in cellular toxin content per unit of biomass. Our data suggest at least some of the >4‐fold difference in toxicity per cell reported from field studies can be explained by limitation by nitrogen or other nutrients and by differences in cell size. The observed increase in brevetoxins in nitrogen limited cells is consistent with the carbon:nutrient balance hypothesis for increases in toxins and other plant defenses under nutrient limitation.
Journal of Shellfish Research | 2008
R. Wayne Litaker; Thomas N. Stewart; Bich-Thuy L. Eberhart; John C. Wekell; Vera L. Trainer; Raphael M. Kudela; Peter E. Miller; Alice Roberts; Cassandra Hertz; Tyler A. Johnson; Greg Frankfurter; G. Jason Smith; Astrid Schnetzer; Joe Schumacker; Jonnette L. Bastian; Anthony Odell; Patrick Gentien; Dominique Le Gal; D. Ransom Hardison; Patricia A. Tester
Abstract Domoic acid (DA) is a potent toxin produced by bloom-forming phytoplankton in the genus Pseudo-nitzschia, which is responsible for causing amnesic shellfish poisoning (ASP) in humans. ASP symptoms include vomiting, diarrhea, and in more severe cases confusion, loss of memory, disorientation, and even coma or death. This paper describes the development and validation of a rapid, sensitive, enzyme linked immunosorbent assay test kit for detecting DA using a monoclonal antibody. The assay gives equivalent results to those obtained using standard high performance liquid chromatography, fluorenylmethoxycarbonyl high performance liquid chromatography, or liquid chromatography—mass spectrometry methods. It has a linear range from 0.1–3 ppb and was used successfully to measure DA in razor clams, mussels, scallops, and phytoplankton. The assay requires approximately 1.5 h to complete and has a standard 96-well format where each strip of eight wells is removable and can be stored at 4°C until needed. The first two wells of each strip serve as an internal control eliminating the need to run a standard curve. This allows as few as 3 or as many as 36 duplicate samples to be run at a time enabling real-time sample processing and limiting degradation of DA, which can occur during storage. There was minimal cross-reactivity in this assay with glutamine, glutamic acid, kainic acid, epi- or iso-DA. This accurate, rapid, cost-effective, assay offers environmental managers and public health officials an effective tool for monitoring DA concentrations in environment samples.
PLOS ONE | 2016
Richard J. Lewis; Marco Inserra; Irina Vetter; William C. Holland; D. Ransom Hardison; Patricia A. Tester; R. Wayne Litaker
Background Ciguatera is a circumtropical disease produced by polyether sodium channel toxins (ciguatoxins) that enter the marine food chain and accumulate in otherwise edible fish. Ciguatoxins, as well as potent water-soluble polyethers known as maitotoxins, are produced by certain dinoflagellate species in the genus Gambierdiscus and Fukuyoa spp. in the Pacific but little is known of the potential of related Caribbean species to produce these toxins. Methods We established a simplified procedure for extracting polyether toxins from Gambierdiscus and Fukuyoa spp. based on the ciguatoxin rapid extraction method (CREM). Fractionated extracts from identified Pacific and Caribbean isolates were analysed using a functional bioassay that recorded intracellular calcium changes (Ca2+) in response to sample addition in SH-SY5Y cells. Maitotoxin directly elevated Ca2+i, while low levels of ciguatoxin-like toxins were detected using veratridine to enhance responses. Results We identified significant maitotoxin production in 11 of 12 isolates analysed, with 6 of 12 producing at least two forms of maitotoxin. In contrast, only 2 Caribbean isolates produced detectable levels of ciguatoxin-like activity despite a detection limit of >30 pM. Significant strain-dependent differences in the levels and types of ciguatoxins and maitotoxins produced by the same Gambierdiscus spp. were also identified. Conclusions The ability to rapidly identify polyether toxins produced by Gambierdiscus spp. in culture has the potential to distinguish ciguatoxin-producing species prior to large-scale culture and in naturally occurring blooms of Gambierdiscus and Fukuyoa spp. Our results have implications for the evaluation of ciguatera risk associated with Gambierdiscus and related species.
Harmful Algae | 2017
Francesco Pisapia; William C. Holland; D. Ransom Hardison; R. Wayne Litaker; Santiago Fraga; Tomohiro Nishimura; Masao Adachi; Lam Nguyen-Ngoc; Véronique Séchet; Zouher Amzil; Christine Herrenknecht; Philipp Hess
Species in the epi-benthic dinoflagellate genus Gambierdiscus produce ciguatoxins (CTXs) and maitotoxins (MTXs), which are among the most potent marine toxins known. Consumption of fish contaminated with sufficient quantities of CTXs causes Ciguatera Fish Poisoning (CFP), the largest cause of non-bacterial food poisoning worldwide. Maitotoxins, which can be found in the digestive system of fish, could also contribute to CFP if such tissues are consumed. Recently, an increasing number of Gambierdiscus species have been identified; yet, little is known about the variation in toxicity among Gambierdiscus strains or species. This study is the first assessment of relative CTX- and MTX-toxicity of Gambierdiscus species from areas as widespread as the North-Eastern Atlantic Ocean, Pacific Ocean and the Mediterranean Sea. A total of 13 strains were screened: (i) seven Pacific strains of G. australes, G. balechii, G. caribaeus, G. carpenteri, G. pacificus, G. scabrosus and one strain of an undetermined species (Gambierdiscus sp. Viet Nam), (ii) five strains from the North-Eastern Atlantic Ocean (two G. australes, a single G. excentricus and two G. silvae strains), and (iii) one G. carolinianus strain from the Mediterranean Sea. Cell pellets of Gambierdiscus were extracted with methanol and the crude extracts partitioned into a CTX-containing dichloromethane fraction and a MTX-containing aqueous methanol fraction. CTX-toxicity was estimated using the neuro-2a cytoxicity assay, and MTX-toxicity via a human erythrocyte lysis assay. Different species were grouped into different ratios of CTX- and MTX-toxicity, however, the ratio was not related to the geographical origin of species (Atlantic, Mediterranean, Pacific). All strains showed MTX-toxicity, ranging from 1.5 to 86pg MTX equivalents (eq) cell-1. All but one of the strains showed relatively low CTX-toxicity ranging from 0.6 to 50 fg CTX3C eq cell-1. The exception was the highly toxic G. excentricus strain from the Canary Islands, which produced 1426 fg CTX3C eq cell-1. As was true for CTX, the highest MTX-toxicity was also found in G. excentricus. Thus, the present study confirmed that at least one species from the Atlantic Ocean demonstrates similar toxicity as the most toxic strains from the Pacific, even if the metabolites in fish have so far been shown to be more toxic in the Pacific Ocean.
PLOS ONE | 2016
D. Ransom Hardison; William C. Holland; Jennifer R. McCall; Andrea J. Bourdelais; Daniel G. Baden; H. Taiana Darius; Mireille Chinain; Patricia A. Tester; Damian Shea; Harold A. Flores Quintana; James A. Morris; R. Wayne Litaker
Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs). One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R)). However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R) in certain labs. A fluorescence based receptor binding assay (RBA(F)) was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®- PbTx-2) for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C) with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1). Fish (N = 61) of six different species were screened using the RBA(F). Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a) correlated well (R2 = 0.71) with those of the RBA(F), given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F) affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F), which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F) advantages include the long-term (> 5 years) stability of the BODIPY®- PbTx-2 and having similar results as the commonly used RBA(R). The RBA(F) is cost-effective, allows high sample throughput, and is well-suited for routine CTX monitoring programs.
Proceedings of the National Academy of Sciences of the United States of America | 2013
William G. Sunda; Cheska Burleson; D. Ransom Hardison; Jeanine S. Morey; Zhihong Wang; Jennifer Wolny; Alina A. Corcoran; Leanne J. Flewelling; Frances M. Van Dolah
With the global proliferation of toxic harmful algal bloom species, there is a need to identify the environmental and biological factors that regulate toxin production. One such species, Karenia brevis, forms nearly annual blooms that threaten coastal regions throughout the Gulf of Mexico. This dinoflagellate produces brevetoxins, which are potent neurotoxins that cause neurotoxic shellfish poisoning and respiratory illness in humans, as well as massive fish kills. A recent publication reported that a rapid decrease in salinity increased cellular toxin quotas in K. brevis and hypothesized that brevetoxins serve a role in osmoregulation. This finding implied that salinity shifts could significantly alter the toxic effects of blooms. We repeated the original experiments separately in three different laboratories and found no evidence for increased brevetoxin production in response to low-salinity stress in any of the eight K. brevis strains we tested, including three used in the original study. Thus, we find no support for an osmoregulatory function of brevetoxins. The original publication also stated that there was no known cellular function for brevetoxins. However, there is increasing evidence that brevetoxins promote survival of the dinoflagellates by deterring grazing by zooplankton. Whether they have other as-yet-unidentified cellular functions is currently unknown.
PLOS ONE | 2017
R. Wayne Litaker; William C. Holland; D. Ransom Hardison; Francesco Pisapia; Philipp Hess; Steven R. Kibler; Patricia A. Tester
Dinoflagellate species belonging to the genera Gambierdiscus and Fukuyoa produce ciguatoxins (CTXs), potent neurotoxins that concentrate in fish causing ciguatera fish poisoning (CFP) in humans. While the structures and toxicities of ciguatoxins isolated from fish in the Pacific and Caribbean are known, there are few data on the variation in toxicity between and among species of Gambierdiscus and Fukuyoa. Quantifying the differences in species-specific toxicity is especially important to developing an effective cell-based risk assessment strategy for CFP. This study analyzed the ciguatoxicity of 33 strains representing seven Gambierdiscus and one Fukuyoa species using a cell based Neuro-2a cytotoxicity assay. All strains were isolated from either the Caribbean or Gulf of Mexico. The average toxicity of each species was inversely proportional to growth rate, suggesting an evolutionary trade-off between an investment in growth versus the production of defensive compounds. While there is 2- to 27-fold variation in toxicity within species, there was a 1740-fold difference between the least and most toxic species. Consequently, production of CTX or CTX-like compounds is more dependent on the species present than on the random occurrence of high or low toxicity strains. Seven of the eight species tested (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, Gambierdiscus ribotype 2, G. silvae and F. ruetzleri) exhibited low toxicities, ranging from 0 to 24.5 fg CTX3C equivalents cell-1, relative to G. excentricus, which had a toxicity of 469 fg CTX3C eq. cell-1. Isolates of G. excentricus from other regions have shown similarly high toxicities. If the hypothesis that G. excentricus is the primary source of ciguatoxins in the Atlantic is confirmed, it should be possible to identify areas where CFP risk is greatest by monitoring only G. excentricus abundance using species-specific molecular assays.
Proceedings of the National Academy of Sciences of the United States of America | 2013
William G. Sunda; Cheska Burleson; D. Ransom Hardison; Jeanine S. Morey; Zhihong Wang; Jennifer Wolny; Alina A. Corcoran; Leanne J. Flewelling; Frances M. Van Dolah
Our paper (1) was undertaken to challenge earlier reports that low salinity stress increases brevetoxin production in Karenia brevis (2). Despite independent negative findings by three laboratories (1), Errera and Campbell still assert that low salinity shock increases cellular brevetoxins (3). Their initial report of >14-fold increases (2) lacks experimental controls. Their correction (2) substantially reduces the reported increases to 20–53% but does not address the lack of controls or alter their interpretation. They now (3) refer to results from new experiments that have not yet been published or vetted by peer review. In their rebuttal, they misrepresent data in Sunda et al. (1). For example, they say that “laboratory A also demonstrated increased brevetoxin cell quota in SP3 by ∼15% after 12 d,” but this increase was within the SD of replicate analyses. Indeed, statistical tests showed no significant changes in brevetoxin per cell following low salinity shock in the experiments conducted by our three laboratories (1).
PLOS ONE | 2018
D. Ransom Hardison; William C. Holland; H. Taiana Darius; Mireille Chinain; Patricia A. Tester; Damian Shea; Alex K. Bogdanoff; James A. Morris; Harold A. Flores Quintana; Christopher R. Loeffler; Dayne Buddo; R. Wayne Litaker
Lionfish, native to reef ecosystems of the tropical and sub-tropical Indo-Pacific, were introduced to Florida waters in the 1980s, and have spread rapidly throughout the northwestern Atlantic, Caribbean Sea and the Gulf of Mexico. These invasive, carnivorous fish significantly reduce other fish and benthic invertebrate biomass, fish recruitment, and species richness in reef ecosystems. Fisheries resource managers have proposed the establishment of a commercial fishery to reduce lionfish populations and mitigate adverse effects on reef communities. The potential for a commercial fishery for lionfish is the primary reason to identify locations where lionfish accumulate sufficient amounts of ciguatoxin (CTX) to cause ciguatera fish poisoning (CFP), the leading cause of non-bacterial seafood poisoning associated with fish consumption. To address this issue, an initial geographic assessment of CTX toxicity in lionfish from the Caribbean and Gulf of Mexico was conducted. Lionfish samples (n = 293) were collected by spearfishing from 13 locations (74 sampling sites) around the Caribbean and Gulf of Mexico between 2012 and 2015. The highest frequencies of lionfish containing measurable CTX occurred in areas known to be high-risk regions for CFP in the central to eastern Caribbean (e.g., 53% British Virgin Islands and 5% Florida Keys). Though measurable CTX was found in some locations, the majority of the samples (99.3%) contained CTX concentrations below the United States Food and Drug Administration guidance level of 0.1 ppb Caribbean ciguatoxin-1 (C-CTX-1) equivalents (eq.). Only 0.7% of lionfish tested contained more than 0.1 ppb C-CTX-1 eq. As of 2018, there has been one suspected case of CFP from eating lionfish. Given this finding, current risk reduction techniques used to manage CTX accumulating fish are discussed.
Limnology and Oceanography | 2007
William G. Sunda; D. Ransom Hardison