Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Rodriguez is active.

Publication


Featured researches published by D. Rodriguez.


Agriculture, Ecosystems & Environment | 2002

Effects of elevated CO2 and drought on wheat: Testing crop simulation models for different experimental and climatic conditions

Frank Ewert; D. Rodriguez; P.D. Jamieson; Mikhail A. Semenov; Rowan A. C. Mitchell; J. Goudriaan; J.R. Porter; Bruce A. Kimball; Paul J. Pinter; Remigius Manderscheid; Hans-Joachim Weigel; Andreas Fangmeier; E. Fereres; Francisco J. Villalobos

Effects of increasing carbon dioxide concentration [CO2] on wheat vary depending on water supply and climatic conditions, which are difficult to estimate. Crop simulation models are often used to predict the impact of global atmospheric changes on food production. However, models have rarely been tested for effects on crops of [CO2] and drought for different climatic conditions due to limited data available from field experiments. Simulations of the effects of elevated [CO2] and drought on spring wheat (Triticum aestivum L.) from three crop simulation models (LINTULCC2, AFRCWHEAT2, Sirius), which differ in structure and mechanistic detail, were compared with observations. These were from 2 years of free-air carbon dioxide enrichment (FACE) experiments in Maricopa, Arizona and 2 years of standardised (in crop management and soil conditions) open-top chamber (OTC) experiments in Braunschweig and Giessen, Germany. In a simulation exercise, models were used to assess the possible impact of increased [CO2] on wheat yields measured between 1987 and 1999 at one farm site in the drought prone region of Andalucia, south Spain. The models simulated well final biomass (BM), grain yield (GY), cumulative evapotranspiration (ET) and water use efficiency (WUE) of wheat grown in the FACE experiments but simulations were unsatisfactory for OTC experiments. Radiation use efficiency (RUE) and yield responses to [CO2] and drought were on average higher in OTC than in FACE experiments. However, there was large variation among OTC experiments. Plant growth in OTCs was probably modified by several factors related to plot size, the use (or not use) of border plants, airflow pattern, modification of radiation balance and/or restriction of rooting volume that were not included in the models. Variation in farm yields in south Spain was partly explained by the models, but sources of unexplained yield variation could not be identified and were most likely related to effects of pests and diseases that were not included in the models. Simulated GY in south Spain increased in the range between 30 and 65% due to doubling [CO2]. The simulated increase was larger when a [CO2]×drought interaction was assumed (LINTULCC2, AFRCWHEAT2) than when it was not (Sirius). It was concluded that crop simulation models are able to reproduce wheat growth and yield for different [CO2] and drought treatments in a field environment. However, there is still uncertainty about the combined effects of [CO2] and drought including the timing of drought stress and about relationships that determine yield variation at farm and larger scales that require further investigation including model testing.


Crop & Pasture Science | 2006

Detection of nitrogen deficiency in wheat from spectral reflectance indices and basic crop eco-physiological concepts

D. Rodriguez; G. J. Fitzgerald; R. Belford; L. K. Christensen

We tested the capacity of several published multispectral indices to estimate the nitrogen nutrition of wheat canopies grown under different levels of water supply and plant density and derived a simple canopy reflectance index that is greatly independent of those factors. Planar domain geometry was used to account for mixed signals from the canopy and soil when the ground cover was low. A nitrogen stress index was developed, which adjusts shoot %N for plant biomass and area, thereby accounting for environmental conditions that affect growth, such as crop water status. The canopy chlorophyll content index (CCCi) and the modified spectral ratio planar index (mSRPi) could explain 68 and 69% of the observed variability in the nitrogen nutrition of the crop as early as Zadoks 33, irrespective of water status or ground cover. The CCCi was derived from the combination of 3 wavebands 670, 720 and 790 nm, and the mSRPi from 445, 705 and 750 nm, together with broader bands in the NIR and RED. The potential for their spatial application over large fields/paddocks is discussed.


Journal of Climate | 2013

Two Contrasting Severe Seasonal Extremes in Tropical South America in 2012: Flood in Amazonia and Drought in Northeast Brazil

Jose A. Marengo; Lincoln M. Alves; Wagner R. Soares; D. Rodriguez; Helio Camargo; Marco Paredes Riveros; Amelia Diaz Pabló

AbstractTwo simultaneous extreme events affected tropical South America to the east of the Andes during the austral summer and fall of 2012: a severe drought in Northeast Brazil and intense rainfall and floods in Amazonia, both considered records for the last 50 years. Changes in atmospheric circulation and rainfall were consistent with the notion of an active role of colder-than-normal surface waters in the equatorial Pacific, with above-normal upward motion and rainfall in western Amazonia and increased subsidence over Northeast Brazil. Atmospheric circulation and soil moisture anomalies in the region contributed to an intensified transport of Atlantic moisture into the western part of Amazonia then turning southward to the southern Amazonia region, where the Chaco low was intensified. This was favored by the intensification of subtropical high pressure over the region, associated with an anomalously intense and northward-displaced Atlantic high over a relatively colder subtropical South Atlantic Ocean....


Plant and Soil | 1998

Plant leaf area expansion and assimilate production in wheat (Triticum aestivum L.) growing under low phosphorus conditions

D. Rodriguez; W.G. Keltjens; J. Goudriaan

Under phosphorus deficiency reductions in plant leaf area have been attributed to both direct effects of P on the individual leaf expansion rate and to a reduced availability of assimilates for leaf growth. In this work we use experimental and simulation techniques to identify and quantify these processes in wheat plants growing under P-deficient conditions. In a glasshouse experiment we studied the effects of soil P addition (0–138 kg P2O5 ha-1) on tillering, leaf emergence, leaf expansion, plant growth, and leaf photosynthesis of wheat plants (cv. INTA Oasis) that were not water stressed. Plants were grown in pots containing a P-deficient (3 mg P g-1 soil) sandy soil. Sowing and pots were arranged to simulate a crop stand of 173 plants m-2. Experimental results were integrated in a simulation model to study the relative importance of each process in determining the plant leaf area during vegetative stages of wheat. Phosphorus deficiency significantly reduced plant leaf area and dry weight production. Under P-deficient conditions the phyllochron (PHY) was increased up to a 32%, compared to that of high-P plants. In low-P plants the rate of individual leaf area expansion during the quasi-linear phase of leaf expansion (LER) was significantly reduced. The effect of P deficiency on LER was the main determinant of the final size of the individual leaves. In recently expanded leaves phosphorus deficiency reduced the photosynthesis rate per unit leaf area at high radiation (AMAX), up to 57%. Relative values of AMAX showed an hyperbolic relationship with leaf P% saturating at 0.27%. Relative values of the tillering rate showed an hyperbolic relationship with the shoot P% saturating at values above 0.38%. The value of LER was not related to the concentration of P in leaves or shoots. A morphogenetic model of leaf area development and growth was developed to quantify the effect of assimilate supply at canopy level on total leaf area expansion, and to study the sensitivity of different model variables to changes in model parameters. Simulation results indicated that under mild P stress conditions up to 80% of the observed reduction in plant leaf area was due to the effects of P deficiency on leaf emergence and tillering. Under extreme P-deficient conditions the simulation model failed to explain the experimental results indicating that other factors not taken into account by the model, i.e. direct effects of P on leaf expansion, must have been active. Possible mechanisms of action of the direct effects of P on individual leaf expansion are discussed in this work.


Crop & Pasture Science | 2007

The limit to wheat water-use efficiency in eastern Australia. I. Gradients in the radiation environment and atmospheric demand.

D. Rodriguez; Victor O. Sadras

In the wheatbelt of eastern Australia, rainfall shifts from winter dominated in the south (South Australia, Victoria) to summer dominated in the north (northern New South Wales, southern Queensland). The seasonality of rainfall, together with frost risk, drives the choice of cultivar and sowing date, resulting in a flowering time between October in the south and August in the north. In eastern Australia, crops are therefore exposed to contrasting climatic conditions during the critical period around flowering, which may affect yield potential, and the efficiency in the use of water (WUE) and radiation (RUE). In this work we analysed empirical and simulated data, to identify key climatic drivers of potential water- and radiation-use efficiency, derive a simple climatic index of environmental potentiality, and provide an example of how a simple climatic index could be used to quantify the spatial and temporal variability in resource-use efficiency and potential yield in eastern Australia. Around anthesis, from Horsham to Emerald, median vapour pressure deficit (VPD) increased from 0.92 to 1.28 kPa, average temperature increased from 12.9 to 15.2°C, and the fraction of diffuse radiation (FDR) decreased from 0.61 to 0.41. These spatial gradients in climatic drivers accounted for significant gradients in modelled efficiencies: median transpiration WUE (WUEB/T) increased southwards at a rate of 2.6% per degree latitude and median RUE increased southwards at a rate of 1.1% per degree latitude. Modelled and empirical data confirmed previously established relationships between WUEB/T and VPD, and between RUE and photosynthetically active radiation (PAR) and FDR. Our analysis also revealed a non-causal inverse relationship between VPD and radiation-use efficiency, and a previously unnoticed causal positive relationship between FDR and water-use efficiency. Grain yield (range 1-7 t/ha) measured in field experiments across South Australia, New South Wales, and Queensland (n = 55) was unrelated to the photothermal quotient (Pq = PAR/T) around anthesis, but was significantly associated (r2 = 0.41, P < 0.0001) with newly developed climatic index: a normalised photothermal quotient (NPq = Pq . FDR/VPD). This highlights the importance of diffuse radiation and vapour pressure deficit as sources of variation in yield in eastern Australia. Specific experiments designed to uncouple VPD and FDR and more mechanistic crop models might be required to further disentangle the relationships between efficiencies and climate drivers.


Crop & Pasture Science | 2007

The limit to wheat water-use efficiency in eastern Australia. II. Influence of rainfall patterns

Victor O. Sadras; D. Rodriguez

We investigated the influence of rainfall patterns on the water-use efficiency of wheat in a transect between Horsham (36°S) and Emerald (23°S) in eastern Australia. Water-use efficiency was defined in terms of biomass and transpiration, WUEB/T, and grain yield and evapotranspiration, WUEY/ET. Our working hypothesis is that latitudinal trends in WUEY/ET of water-limited crops are the complex result of southward increasing WUEB/T and soil evaporation, and season-dependent trends in harvest index. Our approach included: (a) analysis of long-term records to establish latitudinal gradients of amount, seasonality, and size-structure of rainfall; and (b) modelling wheat development, growth, yield, water budget components, and derived variables including WUEB/T and WUEY/ET. Annual median rainfall declined from around 600 mm in northern locations to 380 mm in the south. Median seasonal rain (from sowing to harvest) doubled between Emerald and Horsham, whereas median off-season rainfall (harvest to sowing) ranged from 460 mm at Emerald to 156 mm at Horsham. The contribution of small events (≤ 5 mm) to seasonal rainfall was negligible at Emerald (median 15 mm) and substantial at Horsham (105 mm). Power law coefficients (τ), i.e. the slopes of the regression between size and number of events in a log-log scale, captured the latitudinal gradient characterised by an increasing dominance of small events from north to south during the growing season. Median modelled WUEB/T increased from 46 kg/ha.mm at Emerald to 73 kg/ha.mm at Horsham, in response to decreasing atmospheric demand. Median modelled soil evaporation during the growing season increased from 70 mm at Emerald to 172 mm at Horsham. This was explained by the size-structure of rainfall characterised with parameter τ, rather than by the total amount of rainfall. Median modelled harvest index ranged from 0.25 to 0.34 across locations, and had a season-dependent latitudinal pattern, i.e. it was greater in northern locations in dry seasons in association with wetter soil profiles at sowing. There was a season-dependent latitudinal pattern in modelled WUEY/ET. In drier seasons, high soil evaporation driven by a very strong dominance of small events, and lower harvest index override the putative advantage of low atmospheric demand and associated higher WUEB/T in southern locations, hence the significant southwards decrease in WUEY/ET. In wetter seasons, when large events contribute a significant proportion of seasonal rain, higher WUEB/T in southern locations may translate into high WUEY/ET. Linear boundary functions (French-Schultz type models) accounting for latitudinal gradients in its parameters, slope, and x-intercept, were fitted to scatter-plots of modelled yield v. evapotranspiration. The x-intercept of the model is re-interpreted in terms of rainfall size structure, and the slope or efficiency multiplier is described in terms of the radiation, temperature, and air humidity properties of the environment. Implications for crop management and breeding are discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Drivers of household food availability in sub-Saharan Africa based on big data from small farms

Romain Frelat; Santiago Lopez-Ridaura; Ken E. Giller; Mario Herrero; Sabine Douxchamps; Agnes Andersson Djurfeldt; Olaf Erenstein; B. Henderson; Menale Kassie; Birthe K. Paul; Cyrille Rigolot; Randall S. Ritzema; D. Rodriguez; Piet van Asten; Mark T. van Wijk

Significance We collated a unique dataset covering land use and production data of more than 13,000 smallholder farm households in 93 sites in 17 countries across sub-Saharan Africa. The study quantifies the importance of off-farm income and market conditions across sites differing strongly in agroecology and derives generally applicable threshold values that determine whether farm households have enough food available to feed their families. These results show there is a strong need for multisectoral policy harmonization and incentives and improved interconnectedness of people to urban centers and diversification of employment sources, rather than a singular focus on agricultural development of smallholder farmers in sub-Saharan Africa. We calculated a simple indicator of food availability using data from 93 sites in 17 countries across contrasted agroecologies in sub-Saharan Africa (>13,000 farm households) and analyzed the drivers of variations in food availability. Crop production was the major source of energy, contributing 60% of food availability. The off-farm income contribution to food availability ranged from 12% for households without enough food available (18% of the total sample) to 27% for the 58% of households with sufficient food available. Using only three explanatory variables (household size, number of livestock, and land area), we were able to predict correctly the agricultural determined status of food availability for 72% of the households, but the relationships were strongly influenced by the degree of market access. Our analyses suggest that targeting poverty through improving market access and off-farm opportunities is a better strategy to increase food security than focusing on agricultural production and closing yield gaps. This calls for multisectoral policy harmonization, incentives, and diversification of employment sources rather than a singular focus on agricultural development. Recognizing and understanding diversity among smallholder farm households in sub-Saharan Africa is key for the design of policies that aim to improve food security.


Plant and Soil | 1998

Leaf area expansion and assimilate production in sunflower (Helianthus annuus L.) growing under low phosphorus conditions.

D. Rodriguez; M.M. Zubillaga; E.L. Ploschuk; W.G. Keltjens; J. Goudriaan; R.S. Lavado

Reductions in leaf area and plant growth as a consequence of phosphorus (P) limitations have been attributed both to direct effects of P shortage on leaf expansion rate and to a reduced production of assimilates required for growth. Canopy assimilation and leaf area expansion are closely interrelated processes. In this work we used experimental and simulation techniques to identify and study their importance in determining leaf area on sunflower (Helianthus annuus L.) growing under P-deficient conditions. Experiment 1 was done outdoors, in Buenos Aires, Argentina, and Experiment 2 in a glasshouse in Wageningen, The Netherlands. In both experiments we studied the effects of soil P addition on leaf appearance, leaf expansion, dry matter accumulation, and leaf photosynthesis of non-water stressed plants grown in pots containing a P-deficient soil. Before sowing the equivalent amounts of 0–600 kg of super phosphate ha-1 were added to the pots. Phosphorus deficiency delayed leaf appearance increasing the value of the phyllochron (PHY) up to 76%, the rate of leaf area expansion during the quasi-linear phase of leaf expansion (LER) was reduced by up to 74%, with respect to high P plants. Phosphorus deficiency reduced by up to 50% the rate of light saturated photosynthesis per unit of leaf area (AMAX) in recently expanded leaves, while at low levels of leaf insertion in the canopy, AMAX was reduced by up to 85%, when compared to that in high P plants. Phosphorus deficiency also reduced the duration of the quasi-linear phase of leaf expansion by up to eight days. The values of LER were related (r = 0.56, P < 0.05) to the mean concentration of P in all the leaves (Leaves P%) and not to the concentration of P in the individual leaf where LER was determined (r = 0.22, P < 0.4) suggesting that under P deficiency individual leaf expansion was not likely to be regulated by the total P concentration at leaf level. The values of AMAX of individual leaves were related (r = 0.79, P < 0.01) to the concentration of total P in the corresponding leaf (Leaf P%). LER showed a hyperbolic relationship with Leaves P% (R2 = 0.94, P < 0.01, n = 13) that saturate at 0.14%. AMAX showed a hyperbolic relationship with Leaf P% (R2 = 0.73, P < 0.01, n = 53) that saturated with values of Leaf P% higher than 0.22. A morphogenetic model of leaf area development and growth was developed to quantify the effect of assimilate supply at canopy level on total leaf area expansion, and to study the effects of model parameters on the growth of sunflower plants under P-deficient conditions. With this model we identified the existence of direct effects of P deficiency on individual leaf area expansion. However, we calculated that under mild P stress conditions up to 83% of the reduction in the observed leaf area was explained by the particular effects of P% on the rate of leaf appearance, on the duration of the linear period of leaf expansion, and on the value of AMAX. We also calculated that the effects of P deficiency on the value of AMAX alone, explained up to 41% of the observed reductions in total leaf area between the highest and the intermediate P level in Experiment 2. Possible mechanisms of action of the direct effects of P on individual leaf expansion are discussed in this paper.


Crop & Pasture Science | 2005

Spatial assessment of the physiological status of wheat crops as affected by water and nitrogen supply using infrared thermal imagery

D. Rodriguez; Victor O. Sadras; L. K. Christensen; R. Belford

This work addresses the need for meaningful spatial indices of the physiological condition of field crops for site-specific management and variable rate application in precision agriculture. Precision agriculture is designed to target crop inputs according to within-field requirements to increase profitability while protecting the environment. The objectives of this work were to (a) develop a canopy physiological stress index with spatial resolution commensurate with the needs of site-specific management, and (b) test the physiological meaning of this index by exploring its association with key processes and variables at leaf and crop levels. We report results from a single-year field experiment where different levels of irrigation, wheat crop density, and nitrogen supply were applied to increase the expression of within-season variability. We defined a canopy stress index (CSI) as the difference between canopy (Tc), and air temperature (Ta), normalised by vapour pressure deficit (VPD): CSI = (Tc – Ta)/VPD. A novel method to extract canopy temperatures (Tc) from complex digital thermal images was developed, thus allowing for the spatial characterisation of CSI. CSI is expected to be positive and high if the capacity of the canopy to dissipate heat is reduced as when stomata close. CSI accounted for 80% of the variation in growth rate and yield, compared with 46–49% explained by the normalised difference vegetation index (NDVI). Most of the variation in crop response variables was related to water supply. The physiological meaning of this index was reinforced by its significant association with gas exchange variables measured at the leaf-level. The potential for the use of digital thermal imaging in precision agriculture is discussed.


Plant and Soil | 1999

Effects of phosphorus nutrition on tiller emergence in wheat

D. Rodriguez; Fernando H. Andrade; J. Goudriaan

Phosphorus (P) deficiency limits the yield of wheat, particularly by reducing the number of ears per unit of area because of a poor tiller emergence. The objectives of this work were to (i) determine whether tiller emergence under low phosphorus availability is a function of the availability of assimilates for growth or a direct result of low P availability, (ii) attempt to establish a quantitative relation between an index of the availability of P in the plant and the effects of P deficiency on tiller emergence, and (iii) to provide a better understanding of the mechanisms involved in tiller emergence in field-grown wheat. Wheat (Triticum aestivum L., cv. INTA Oasis), was grown in the field under drip irrigation on a typic Argiudol, low in P (5.5 μg P g-1 soil Bray & Kurtz I) in Balcarce, Argentina. Treatments consisted of the combination of three levels of P fertilization 0, 60 and 200 kg P2O5 ha-1, and two levels of assimilate availability, a control (non-shaded) and 65% of reduction in incident irradiance from seedling emergence until the end of tillering (shaded). Phosphorus treatments significantly modified the pattern of growth and development of the plants. Shading reduced the growth and concentration of water-soluble carbohydrates in leaves and stems. Leaf photosynthetic rate at saturating irradiance was reduced by P deficiency, but was not affected by shading. At shoot P concentrations less than 4.2 g P kg-1 the heterogeneity in the plant population increased with respect to the number of plants bearing a certain tiller. At a shoot P concentration of 1.7 g P kg-1 tillering ceased completely. Phosphorus deficiency directly altered the normal pattern of tiller emergence by slowing the emergence of leaves on the main stem (i.e. increasing the phyllochron), and by reducing the maximum rate of tiller emergence for each tiller.

Collaboration


Dive into the D. Rodriguez's collaboration.

Top Co-Authors

Avatar

Victor O. Sadras

South Australian Research and Development Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Power

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Joseph Eyre

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Goudriaan

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

J. Dimes

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg McLean

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge