D. Ross Laybutt
Garvan Institute of Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Ross Laybutt.
Nature | 2010
Sheau-Fang Ng; Ruby C.Y. Lin; D. Ross Laybutt; Romain Barrès; Julie A. Owens; Margaret J. Morris
The global prevalence of obesity is increasing across most ages in both sexes. This is contributing to the early emergence of type 2 diabetes and its related epidemic. Having either parent obese is an independent risk factor for childhood obesity. Although the detrimental impacts of diet-induced maternal obesity on adiposity and metabolism in offspring are well established, the extent of any contribution of obese fathers is unclear, particularly the role of non-genetic factors in the causal pathway. Here we show that paternal high-fat-diet (HFD) exposure programs β-cell ‘dysfunction’ in rat F1 female offspring. Chronic HFD consumption in Sprague–Dawley fathers induced increased body weight, adiposity, impaired glucose tolerance and insulin sensitivity. Relative to controls, their female offspring had an early onset of impaired insulin secretion and glucose tolerance that worsened with time, and normal adiposity. Paternal HFD altered the expression of 642 pancreatic islet genes in adult female offspring (Pu2009<u20090.01); genes belonged to 13 functional clusters, including cation and ATP binding, cytoskeleton and intracellular transport. Broader pathway analysis of 2,492 genes differentially expressed (Pu2009<u20090.05) demonstrated involvement of calcium-, MAPK- and Wnt-signalling pathways, apoptosis and the cell cycle. Hypomethylation of the Il13ra2 gene, which showed the highest fold difference in expression (1.76-fold increase), was demonstrated. This is the first report in mammals of non-genetic, intergenerational transmission of metabolic sequelae of a HFD from father to offspring.
Diabetes | 2007
Gang Xu; Hideaki Kaneto; D. Ross Laybutt; Valérie F. Duvivier-Kali; Nitin Trivedi; Kiyoshi Suzuma; George L. King; Gordon C. Weir; Susan Bonner-Weir
Stimulation of insulin secretion by the incretin hormones glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) has been found to be diminished in type 2 diabetes. We hypothesized that this impairment is due to a defect at the receptor level induced by the diabetic state, particularly hyperglycemia. Gene expression of incretin receptors, GLP-1R and GIPR, were significantly decreased in islets of 90% pancreatectomized (Px) hyperglycemic rats, with recovery when glucose levels were normalized by phlorizin. Perifused islets isolated from hyperglycemic Px rats showed reduced insulin responses to GLP-1 and GIP. To examine the acute effect of hyperglycemia on incretin receptor expression, a hyperglycemic clamp study was performed for 96 h with reduction of GLP-1 receptor expression but increase in GIP receptor expression. Similar findings were found when islets were cultured at high glucose concentrations for 48 h. The reduction of GLP-1 receptor expression by high glucose was prevented by dominant-negative protein kinase C (PKC)α overexpression, whereas GLP-1 receptor expression was reduced with wild-type PKCα overexpression. Taken together, GLP-1 and GIP receptor expression is decreased with chronic hyperglycemia, and this decrease likely contributes to the impaired incretin effects found in diabetes.
Diabetes | 2008
Pascal Lovis; E. Roggli; D. Ross Laybutt; Sonia Gattesco; Jiang-Yan Yang; Christian Widmann; Amar Abderrahmani; Romano Regazzi
OBJECTIVE—Visceral obesity and elevated plasma free fatty acids are predisposing factors for type 2 diabetes. Chronic exposure to these lipids is detrimental for pancreatic β-cells, resulting in reduced insulin content, defective insulin secretion, and apoptosis. We investigated the involvement in this phenomenon of microRNAs (miRNAs), a class of noncoding RNAs regulating gene expression by sequence-specific inhibition of mRNA translation. RESEARCH DESIGN AND METHODS—We analyzed miRNA expression in insulin-secreting cell lines or pancreatic islets exposed to palmitate for 3 days and in islets from diabetic db/db mice. We studied the signaling pathways triggering the changes in miRNA expression and determined the impact of the miRNAs affected by palmitate on insulin secretion and apoptosis. RESULTS—Prolonged exposure of the β-cell line MIN6B1 and pancreatic islets to palmitate causes a time- and dose-dependent increase of miR34a and miR146. Elevated levels of these miRNAs are also observed in islets of diabetic db/db mice. miR34a rise is linked to activation of p53 and results in sensitization to apoptosis and impaired nutrient-induced secretion. The latter effect is associated with inhibition of the expression of vesicle-associated membrane protein 2, a key player in β-cell exocytosis. Higher miR146 levels do not affect the capacity to release insulin but contribute to increased apoptosis. Treatment with oligonucleotides that block miR34a or miR146 activity partially protects palmitate-treated cells from apoptosis but is insufficient to restore normal secretion. CONCLUSIONS—Our findings suggest that at least part of the detrimental effects of palmitate on β-cells is caused by alterations in the level of specific miRNAs.
Journal of Biological Chemistry | 2002
D. Ross Laybutt; Arun Sharma; Dennis C. Sgroi; Justin Gaudet; Susan Bonner-Weir; Gordon C. Weir
In models of type 2 diabetes the expression of β-cell genes is altered, but these changes have not fully explained the impairment in β-cell function. We hypothesized that changes in β-cell phenotype and global alterations in both carbohydrate and lipid pathways are likely to contribute to secretory abnormalities. Therefore, expression of genes involved in carbohydrate and lipid metabolism were analyzed in islets 4 weeks after 85–95% partial pancreatectomy (Px) when β-cells have impaired glucose-induced insulin secretion and ATP synthesis. Px rats after 1 week developed mild to severe hyperglycemia that was stable for the next 3 weeks, whereas neither plasma triglyceride, non-esterified fatty acid, or islet triglyceride levels were altered. Expression of peroxisome proliferator-activated receptors (PPARs), with several target genes, were reciprocally regulated; PPARα was markedly reduced even at low level hyperglycemia, whereas PPARγ was progressively increased with increasing hyperglycemia. Uncoupling protein 2 (UCP-2) was increased as were other genes barely expressed in sham islets including lactate dehydrogenase-A (LDH-A), lactate (monocarboxylate) transporters, glucose-6-phosphatase, fructose-1,6-bisphosphatase, 12-lipoxygenase, and cyclooxygenase 2. On the other hand, the expression of β-cell-associated genes, insulin, and GLUT2 were decreased. Treating Px rats with phlorizin normalized hyperglycemia without effecting plasma fatty acids and reversed the changes in gene expression implicating the importance of hyperglycemiaper se in the loss of β-cell phenotype. In addition, parallel changes were observed in β-cell-enriched tissue dissected by laser capture microdissection from the central core of islets. In conclusion, chronic hyperglycemia leads to a critical loss of β-cell differentiation with altered expression of genes involved in multiple metabolic pathways diversionary to normal β-cell glucose metabolism. This global maladaptation in gene expression at the time of increased secretory demand may contribute to the β-cell dysfunction found in diabetes.
Molecular and Cellular Endocrinology | 2012
Mohammed Bensellam; D. Ross Laybutt; Jean-Christophe Jonas
It is well established that regular physiological stimulation by glucose plays a crucial role in the maintenance of the β-cell differentiated phenotype. In contrast, prolonged or repeated exposure to elevated glucose concentrations both in vitro and in vivo exerts deleterious or toxic effects on the β-cell phenotype, a concept termed as glucotoxicity. Evidence indicates that the latter may greatly contribute to the pathogenesis of type 2 diabetes. Through the activation of several mechanisms and signaling pathways, high glucose levels exert deleterious effects on β-cell function and survival and thereby, lead to the worsening of the disease over time. While the role of high glucose-induced β-cell overstimulation, oxidative stress, excessive Unfolded Protein Response (UPR) activation, and loss of differentiation in the alteration of the β-cell phenotype is well ascertained, at least in vitro and in animal models of type 2 diabetes, the role of other mechanisms such as inflammation, O-GlcNacylation, PKC activation, and amyloidogenesis requires further confirmation. On the other hand, protein glycation is an emerging mechanism that may play an important role in the glucotoxic deterioration of the β-cell phenotype. Finally, our recent evidence suggests that hypoxia may also be a new mechanism of β-cell glucotoxicity. Deciphering these molecular mechanisms of β-cell glucotoxicity is a mandatory first step toward the development of therapeutic strategies to protect β-cells and improve the functional β-cell mass in type 2 diabetes.
Journal of Biological Chemistry | 2003
D. Ross Laybutt; Mariela Glandt; Gang Xu; Yu Bai Ahn; Nitin Trivedi; Susan Bonner-Weir; Gordon C. Weir
We have proposed that hyperglycemia-induced dedifferentiation of β-cells is a critical factor for the loss of insulin secretory function in diabetes. Here we examined the effects of the duration of hyperglycemia on gene expression in islets of partially pancreatectomized (Px) rats. Islets were isolated, and mRNA was extracted from rats 4 and 14 weeks after Px or sham Px surgery. Px rats developed different degrees of hyperglycemia; low hyperglycemia was assigned to Px rats with fed blood glucose levels less than 150 mg/dl, and high hyperglycemia was assigned above 150 mg/dl. β-Cell hypertrophy was present at both 4 and 14 weeks. At the same time points, high hyperglycemia rats showed a global alteration in gene expression with decreased mRNA for insulin, IAPP, islet-associated transcription factors (pancreatic and duodenal homeobox-1, BETA2/NeuroD, Nkx6.1, and hepatocyte nuclear factor 1α), β-cell metabolic enzymes (glucose transporter 2, glucokinase, mitochondrial glycerol phosphate dehydrogenase, and pyruvate carboxylase), and ion channels/pumps (Kir6.2, VDCCβ, and sarcoplasmic reticulum Ca2+-ATPase 3). Conversely, genes normally suppressed in β-cells, such as lactate dehydrogenase-A, hexokinase I, glucose-6-phosphatase, stress genes (heme oxygenase-1, A20, and Fas), and the transcription factor c-Myc, were markedly increased. In contrast, gene expression in low hyperglycemia rats was only minimally changed at 4 weeks but significantly changed at 14 weeks, indicating that even low levels of hyperglycemia induce β-cell dedifferentiation over time. In addition, whereas 2 weeks of correction of hyperglycemia completely reverses the changes in gene expression of Px rats at 4 weeks, the changes at 14 weeks were only partially reversed, indicating that the phenotype becomes resistant to reversal in the long term. In conclusion, chronic hyperglycemia induces a progressive loss of β-cell phenotype with decreased expression of β-cell-associated genes and increased expression of normally suppressed genes, these changes being present with even minimal levels of hyperglycemia. Thus, both the severity and duration of hyperglycemia appear to contribute to the deterioration of the β-cell phenotype found in diabetes.
Journal of Clinical Investigation | 2010
Kim Cheng; Kenneth W. K. Ho; Rebecca Stokes; Christopher Scott; Sue Mei Lau; Wayne J. Hawthorne; Philip J. O’Connell; Thomas Loudovaris; Thomas W. H. Kay; Rohit N. Kulkarni; Terumasa Okada; Xiaohui L. Wang; Sun Hee Yim; Yatrik M. Shah; Shane T. Grey; Andrew V. Biankin; James G. Kench; D. Ross Laybutt; Frank J. Gonzalez; C. Ronald Kahn; Jenny E. Gunton
Hypoxia-inducible factor-1alpha (HIF-1alpha) is a transcription factor that regulates cellular stress responses. While the levels of HIF-1alpha protein are tightly regulated, recent studies suggest that it can be active under normoxic conditions. We hypothesized that HIF-1alpha is required for normal beta cell function and reserve and that dysregulation may contribute to the pathogenesis of type 2 diabetes (T2D). Here we show that HIF-1alpha protein is present at low levels in mouse and human normoxic beta cells and islets. Decreased levels of HIF-1alpha impaired glucose-stimulated ATP generation and beta cell function. C57BL/6 mice with beta cell-specific Hif1a disruption (referred to herein as beta-Hif1a-null mice) exhibited glucose intolerance, beta cell dysfunction, and developed severe glucose intolerance on a high-fat diet. Increasing HIF-1alpha levels by inhibiting its degradation through iron chelation markedly improved insulin secretion and glucose tolerance in control mice fed a high-fat diet but not in beta-Hif1a-null mice. Increasing HIF-1alpha levels markedly increased expression of ARNT and other genes in human T2D islets and improved their function. Further analysis indicated that HIF-1alpha was bound to the Arnt promoter in a mouse beta cell line, suggesting direct regulation. Taken together, these findings suggest an important role for HIF-1alpha in beta cell reserve and regulation of ARNT expression and demonstrate that HIF-1alpha is a potential therapeutic target for the beta cell dysfunction of T2D.
Diabetes | 2008
Mia C. Åkerfeldt; Jennifer Howes; Jeng Yie Chan; Veronica A. Stevens; Nacer Boubenna; Helen M. McGuire; Cecile King; Trevor J. Biden; D. Ross Laybutt
OBJECTIVE—Cytokines contribute to β-cell destruction in type 1 diabetes. Endoplasmic reticulum (ER) stress–mediated apoptosis has been proposed as a mechanism for β-cell death. We tested whether ER stress was necessary for cytokine-induced β-cell death and also whether ER stress gene activation was present in β-cells of the NOD mouse model of type 1 diabetes. RESEARCH DESIGN AND METHODS—INS-1 β-cells or rat islets were treated with the chemical chaperone phenyl butyric acid (PBA) and exposed or not to interleukin (IL)-1β and γ-interferon (IFN-γ). Small interfering RNA (siRNA) was used to silence C/EBP homologous protein (CHOP) expression in INS-1 β-cells. Additionally, the role of ER stress in lipid-induced cell death was assessed. RESULTS—Cytokines and palmitate triggered ER stress in β-cells as evidenced by increased phosphorylation of PKR-like ER kinase (PERK), eukaryotic initiation factor (EIF)2α, and Jun NH2-terminal kinase (JNK) and increased expression of activating transcription factor (ATF)4 and CHOP. PBA treatment attenuated ER stress, but JNK phosphorylation was reduced only in response to palmitate, not in response to cytokines. PBA had no effect on cytokine-induced cell death but was associated with protection against palmitate-induced cell death. Similarly, siRNA-mediated reduction in CHOP expression protected against palmitate- but not against cytokine-induced cell death. In NOD islets, mRNA levels of several ER stress genes were reduced (ATF4, BiP [binding protein], GRP94 [glucose regulated protein 94], p58, and XBP-1 [X-box binding protein 1] splicing) or unchanged (CHOP and Edem1 [ER degradation enhancer, mannosidase α–like 1]). CONCLUSIONS—While both cytokines and palmitate can induce ER stress, our results suggest that, in contrast to lipoapoptosis, the PERK-ATF4-CHOP ER stress–signaling pathway is not necessary for cytokine-induced β-cell death.
American Journal of Physiology-endocrinology and Metabolism | 1999
D. Ross Laybutt; Asish K. Saha; Neil B. Ruderman; Trevor J. Biden; Edward W. Kraegen
Chronic glucose infusion results in hyperinsulinemia and causes lipid accumulation and insulin resistance in rat muscle. To examine possible mechanisms for the insulin resistance, alterations in malonyl-CoA and long-chain acyl-CoA (LCA-CoA) concentration and the distribution of protein kinase C (PKC) isozymes, putative links between muscle lipids and insulin resistance, were determined. Cannulated rats were infused with glucose (40 mg ⋅ kg-1 ⋅ min-1) for 1 or 4 days. This increased red quadriceps muscle LCA-CoA content (sum of 6 species) by 1.3-fold at 1 day and 1.4-fold at 4 days vs. saline-infused controls (both P < 0.001 vs. control). The concentration of malonyl-CoA was also increased (1.7-fold at 1 day, P < 0.01, and 2.2-fold at 4 days, P < 0.001 vs. control), suggesting an even greater increase in cytosolic LCA-CoA. The ratio of membrane to cytosolic PKC-ε was increased twofold in the red gastrocnemius after both 1 and 4 days, suggesting chronic activation. No changes were observed for PKC-α, -δ, and -θ. We conclude that LCA-CoAs accumulate in muscle during chronic glucose infusion, consistent with a malonyl-CoA-induced inhibition of fatty acid oxidation (reverse glucose-fatty acid cycle). Accumulation of LCA-CoAs could play a role in the generation of muscle insulin resistance by glucose oversupply, either directly or via chronic activation of PKC-ε.
Diabetologia | 2013
Valeria Nesca; Claudiane Guay; Cécile Jacovetti; Véronique Menoud; Marie-Line Peyot; D. Ross Laybutt; Marc Prentki; Romano Regazzi
Aims/hypothesisMicroRNAs are key regulators of gene expression involved in health and disease. The goal of our study was to investigate the global changes in beta cell microRNA expression occurring in two models of obesity-associated type 2 diabetes and to assess their potential contribution to the development of the disease.MethodsMicroRNA profiling of pancreatic islets isolated from prediabetic and diabetic db/db mice and from mice fed a high-fat diet was performed by microarray. The functional impact of the changes in microRNA expression was assessed by reproducing them in vitro in primary rat and human beta cells.ResultsMicroRNAs differentially expressed in both models of obesity-associated type 2 diabetes fall into two distinct categories. A group including miR-132, miR-184 and miR-338-3p displays expression changes occurring long before the onset of diabetes. Functional studies indicate that these expression changes have positive effects on beta cell activities and mass. In contrast, modifications in the levels of miR-34a, miR-146a, miR-199a-3p, miR-203, miR-210 and miR-383 primarily occur in diabetic mice and result in increased beta cell apoptosis. These results indicate that obesity and insulin resistance trigger adaptations in the levels of particular microRNAs to allow sustained beta cell function, and that additional microRNA deregulation negatively impacting on insulin-secreting cells may cause beta cell demise and diabetes manifestation.Conclusions/interpretationWe propose that maintenance of blood glucose homeostasis or progression toward glucose intolerance and type 2 diabetes may be determined by the balance between expression changes of particular microRNAs.