Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. S. Backos is active.

Publication


Featured researches published by D. S. Backos.


Nature Neuroscience | 2008

Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation

Susana S. Correia; Silvia Bassani; Tyler C. Brown; Marie-France Lisé; D. S. Backos; Alaa El-Husseini; Maria Passafaro; José A. Esteban

The regulated trafficking of neurotransmitter receptors at synapses is critical for synaptic function and plasticity. However, the molecular machinery that controls active transport of receptors into synapses is largely unknown. We found that, in rat hippocampus, the insertion of AMPA receptors (AMPARs) into spines during synaptic plasticity requires a specific motor protein, which we identified as myosin Va. We found that myosin Va associates with AMPARs through its cargo binding domain. This interaction was enhanced by active, GTP-bound Rab11, which is also transported by the motor protein. Myosin Va mediated the CaMKII-triggered translocation of GluR1 receptors from the dendritic shaft into spines, but it was not required for constitutive GluR2 trafficking. Accordingly, myosin Va was specifically required for long-term potentiation, but not for basal synaptic transmission. In summary, we identified the specific motor protein and organelle acceptor that catalyze the directional transport of AMPARs into spines during activity-dependent synaptic plasticity.


Neuron | 2005

NMDA Receptor-Dependent Activation of the Small GTPase Rab5 Drives the Removal of Synaptic AMPA Receptors during Hippocampal LTD

Tyler C. Brown; Irwin C. Tran; D. S. Backos; José A. Esteban

The activity-dependent removal of AMPA receptors from synapses underlies long-term depression in hippocampal excitatory synapses. In this study, we have investigated the role of the small GTPase Rab5 during this process. We propose that Rab5 is a critical link between the signaling cascades triggered by LTD induction and the machinery that executes the activity-dependent removal of AMPA receptors. We have found that Rab5 activation drives the specific internalization of synaptic AMPA receptors in a clathrin-dependent manner and that this activity is required for LTD. Interestingly, Rab5 does not participate in the constitutive cycling of AMPA receptors. Rab5 is able to remove both GluR1 and GluR2 AMPA receptor subunits, leading to GluR1 dephosphorylation. Importantly, NMDA receptor-dependent LTD induction produces a rapid and transient increase of active (GTP bound) Rab5. We propose a model in which synaptic activity leads to Rab5 activation, which in turn drives the removal of AMPA receptors from synapses.


Journal of Biological Chemistry | 2007

Brain-derived neurotrophic factor regulates the expression and synaptic delivery of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons

Margarida V. Caldeira; Carlos V. Melo; Daniela B. Pereira; Ricardo Carvalho; Susana S. Correia; D. S. Backos; Ana Luísa Carvalho; José A. Esteban; Carlos Duarte

Brain-derived neurotrophic factor (BDNF) plays an important role in synaptic plasticity in the hippocampus, but the mechanisms involved are not fully understood. The neurotrophin couples synaptic activation to changes in gene expression underlying long term potentiation and short term plasticity. Here we show that BDNF acutely up-regulates GluR1, GluR2, and GluR3 α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunits in 7-day tropomyosin-related kinase in vitro cultured hippocampal neurons. The increase in GluR1 and GluR2 protein levels in developing cultures was impaired by K252a, a Trk inhibitor, and by translation (emetine and anisomycin) and transcription (α-amanitine and actinomycin D) inhibitors. Accordingly, BDNF increased the mRNA levels for GluR1 and GluR2 subunits. Biotinylation studies showed that stimulation with BDNF for 30 min selectively increased the amount of GluR1 associated with the plasma membrane, and this effect was abrogated by emetine. Under the same conditions, BDNF induced GluR1 phosphorylation on Ser-831 through activation of protein kinase C and Ca2+-calmodulin-dependent protein kinase II. Chelation of endogenous extracellular BDNF with TrkB-IgG selectively decreased GluR1 protein levels in 14-day in vitro cultures of hippocampal neurons. Moreover, BDNF promoted synaptic delivery of homomeric GluR1 AMPA receptors in cultured organotypic slices, by a mechanism independent of NMDA receptor activation. Taken together, the results indicate that BDNF up-regulates the protein levels of AMPA receptor subunits in hippocampal neurons and induces the delivery of AMPA receptors to the synapse.


The EMBO Journal | 2006

Dual role of the exocyst in AMPA receptor targeting and insertion into the postsynaptic membrane

Nashaat Z. Gerges; D. S. Backos; Chamila Rupasinghe; Mark R. Spaller; José A. Esteban

Intracellular membrane trafficking of glutamate receptors at excitatory synapses is critical for synaptic function. However, little is known about the specialized trafficking events occurring at the postsynaptic membrane. We have found that two components of the exocyst complex, Sec8 and Exo70, separately control synaptic targeting and insertion of AMPA‐type glutamate receptors. Sec8 controls the directional movement of receptors towards synapses through PDZ‐dependent interactions. In contrast, Exo70 mediates receptor insertion at the postsynaptic membrane, but it does not participate in receptor targeting. Thus, interference with Exo70 function accumulates AMPA receptors inside the spine, forming a complex physically associated, but not yet fused with the postsynaptic membrane. Electron microscopic analysis of these complexes indicates that Exo70 mediates AMPA receptor insertion directly within the postsynaptic density, rather than at extrasynaptic membranes. Therefore, we propose a molecular and anatomical model that dissects AMPA receptor sorting and synaptic delivery within the spine, and uncovers new functions of the exocyst at the postsynaptic membrane.


Journal of Biological Chemistry | 2004

Local Control of AMPA Receptor Trafficking at the Postsynaptic Terminal by a Small GTPase of the Rab Family

Nashaat Z. Gerges; D. S. Backos; José A. Esteban

The delivery of neurotransmitter receptors into the synaptic membrane is essential for synaptic function and plasticity. However, the molecular mechanisms of these specialized trafficking events and their integration with the intracellular membrane transport machinery are virtually unknown. Here, we have investigated the role of the Rab family of membrane sorting proteins in the late stages of receptor trafficking into the postsynaptic membrane. We have identified Rab8, a vesicular transport protein associated with trans-Golgi network membranes, as a critical component of the cellular machinery that delivers AMPA-type glutamatergic receptors (AMPARs) into synapses. Using electron microscopic techniques, we have found that Rab8 is localized in close proximity to the synaptic membrane, including the postsynaptic density. Electrophysiological studies indicated that Rab8 is necessary for the synaptic delivery of AMPARs during plasticity (long-term potentiation) and during constitutive receptor cycling. In addition, Rab8 is required for AMPAR delivery into the spine surface, but not for receptor transport from the dendritic shaft into the spine compartment or for delivery into the dendritic surface. Therefore, Rab8 specifically drives the local delivery of AMPARs into synapses. These results demonstrate a new role for the cellular secretory machinery in the control of synaptic function and plasticity directly at the postsynaptic membrane.


The Journal of Neuroscience | 2004

Independent Functions of hsp90 in Neurotransmitter Release and in the Continuous Synaptic Cycling of AMPA Receptors

Nashaat Z. Gerges; Irwin C. Tran; D. S. Backos; Jennifer M. Harrell; Michael Chinkers; William B. Pratt; José A. Esteban

The delivery of neurotransmitter receptors into synapses is essential for synaptic function and plasticity. In particular, AMPA-type glutamate receptors (AMPA receptors) reach excitatory synapses according to two distinct routes: a regulated pathway, which operates transiently during synaptic plasticity, and a constitutive pathway, which maintains synaptic function under conditions of basal transmission. However, the specific mechanisms that distinguish these two trafficking pathways are essentially unknown. Here, we evaluate the role of the molecular chaperone hsp90 (heat shock protein 90) in excitatory synaptic transmission in the hippocampus. On one hand, we found that hsp90 is necessary for the efficient neurotransmitter release at the presynaptic terminal. In addition, we identified hsp90 as a critical component of the cellular machinery that delivers AMPA receptors into the postsynaptic membrane. Using the hsp90-specific inhibitors radicicol and geldanamycin, we show that hsp90 is required for the constitutive trafficking of AMPA receptors into synapses during their continuous cycling between synaptic and nonsynaptic sites. In contrast, hsp90 function is not required for either the surface delivery of AMPA receptors into the nonsynaptic plasma membrane or for the acute, regulated delivery of AMPA receptors into synapses during plasticity induction (long-term potentiation). The synaptic cycling of AMPA receptors was also blocked by an hsp90-binding tetratricopeptide repeat (TPR) domain, suggesting that the role of hsp90 in AMPA receptor trafficking is mediated by a TPR domain-containing protein. These results demonstrate new roles for hsp90 in synaptic function by controlling neurotransmitter release and, independently, by mediating the continuous cycling of synaptic AMPA receptors.


Journal of Biological Chemistry | 2014

Identification of 5' AMP-activated kinase as a target of reactive aldehydes during chronic ingestion of high concentrations of ethanol.

Colin T. Shearn; D. S. Backos; David J. Orlicky; Rebecca L. Smathers-McCullough; Dennis R. Petersen

Background: Carbonylation of proteins contributes to increased hepatocellular damage during alcoholic liver disease. Results: In a murine model of alcoholic liver disease, AMPK is covalently modified by reactive aldehydes reducing activity. Conclusion: Inhibition of AMPK activity by reactive aldehydes contributes to increased steatosis in alcoholic liver disease. Significance: This is the first report of AMPK carbonylation and inhibition during conditions of increased oxidative stress. The production of reactive aldehydes including 4-hydroxy-2-nonenal (4-HNE) is a key component of the pathogenesis in a spectrum of chronic inflammatory hepatic diseases including alcoholic liver disease (ALD). One consequence of ALD is increased oxidative stress and altered β-oxidation in hepatocytes. A major regulator of β-oxidation is 5′ AMP protein kinase (AMPK). In an in vitro cellular model, we identified AMPK as a direct target of 4-HNE adduction resulting in inhibition of both H2O2 and 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR)-induced downstream signaling. By employing biotin hydrazide capture, it was confirmed that 4-HNE treatment of cells resulted in carbonylation of AMPKα/β, which was not observed in untreated cells. Using a murine model of alcoholic liver disease, treatment with high concentrations of ethanol resulted in an increase in phosphorylated as well as carbonylated AMPKα. Despite increased AMPK phosphorylation, there was no significant change in phosphorylation of acetyl CoA carboxylase. Mass spectrometry identified Michael addition adducts of 4-HNE on Cys130, Cys174, Cys227, and Cys304 on recombinant AMPKα and Cys225 on recombinant AMPKβ. Molecular modeling analysis of identified 4-HNE adducts on AMPKα suggest that inhibition of AMPK occurs by steric hindrance of the active site pocket and by inhibition of hydrogen peroxide induced oxidation. The observed inhibition of AMPK by 4-HNE provides a novel mechanism for altered β-oxidation in ALD, and these data demonstrate for the first time that AMPK is subject to regulation by reactive aldehydes in vivo.


Archive | 2007

Brain-derivedNeurotrophicFactorRegulatestheExpressionand SynapticDeliveryof-Amino-3-hydroxy-5-methyl-4-isoxazole PropionicAcidReceptorSubunitsinHippocampalNeurons *

Margarida V. Caldeira; Carlos V. Melo; Daniela Pereira; Ricardo Carvalho; Susana S. Correia; D. S. Backos; Carlos Duarte; Fromthe ‡ CenterforNeuroscienceandCellBiology


Archive | 2007

PI(3,4,5)P3-dependent regulation of AMPA receptor synaptic function.

Kristin L. Arendt; Cortney N. Petrok; D. S. Backos; José A. Esteban


Journal of Biological Chemistry | 2007

Brain-derived neurotrophic factor regulates the expression and synaptic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. VOLUME 282 (2007) PAGES 12619-12628

Margarida V. Caldeira; Carlos V. Melo; Daniela Pereira; Ricardo Carvalho; Susana S. Correia; D. S. Backos; Ana Luísa Carvalho; José A. Esteban; Carlos B. Duarte

Collaboration


Dive into the D. S. Backos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nashaat Z. Gerges

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge