D. S. Veselov
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. S. Veselov.
Journal of Experimental Botany | 2012
Sally Wilkinson; G. R. Kudoyarova; D. S. Veselov; T. N. Arkhipova; William J. Davies
Here we highlight how both the root and shoot environment impact on whole plant hormone balance, particularly under stresses such as soil drying, and relate hormone ratios and relative abundances to processes influencing plant performance and yield under both mild and more severe stress. We discuss evidence (i) that abscisic acid (ABA) and ethylene act antagonistically on grain-filling rate amongst other yield-impacting processes; (ii) that ABAs effectiveness as an agent of stomatal closure can be modulated by coincident ethylene or cytokinin accumulation; and (iii) that enhanced cytokinin production can increase growth and yield by improving foliar stay-green indices under stress, and by improving processes that impact grain-filling and number, and that this can be the result of altered relative abundances of cytokinin and ABA (and other hormones). We describe evidence and novel processes whereby these phenomena are/could be amenable to manipulation through genetic and management routes, such that plant performance and yield can be improved. We explore the possibility that a range of ABA-ethylene and ABA-cytokinin relative abundances could represent targets for breeding/managing for yield resilience under a spectrum of stress levels between severe and mild, and could circumvent some of the pitfalls so far encountered in the massive research effort towards breeding for increases in the complex trait of yield.
Journal of Experimental Botany | 2015
G. R. Kudoyarova; Ian C. Dodd; D. S. Veselov; Shane A. Rothwell; Stanislav Yu. Veselov
Changes in resource (mineral nutrients and water) availability, due to their heterogeneous distribution in space and time, affect plant development. Plants need to sense these changes to optimize growth and biomass allocation by integrating root and shoot growth. Since a limited supply of water or nutrients can elicit similar physiological responses (the relative activation of root growth at the expense of shoot growth), similar underlying mechanisms may affect perception and acquisition of either nutrients or water. This review compares root and shoot responses to availability of different macronutrients and water. Attention is given to the roles of root-to-shoot signalling and shoot-to-root signalling, with regard to coordinating changes in root and shoot growth and development. Involvement of plant hormones in regulating physiological responses such as stomatal and hydraulic conductance is revealed by measuring the effects of resource availability on phytohormone concentrations in roots and shoots, and their flow between roots and shoots in xylem and phloem saps. More specific evidence can be obtained by measuring the physiological responses of genotypes with altered hormone responses or concentrations. We discuss the similarity and diversity of changes in shoot growth, allocation to root growth, and root architecture under changes in water, nitrate, and phosphorus availability, and the possible involvement of abscisic acid, indole-acetic acid, and cytokinin in their regulation. A better understanding of these mechanisms may contribute to better crop management for efficient use of these resources and to selecting crops for improved performance under suboptimal soil conditions.
Journal of Plant Growth Regulation | 2008
D. S. Veselov; G. V. Sharipova; S.U. Veselov; G. R. Kudoyarova
Changes in transpiration and stomatal conductance and other characteristics of water relations, growth rate, and ABA content have been followed in short- and long-term experiments in two barley cultivars (cv. Michaelovsky and cv. Prairie) with contrasting drought resistance characteristics. The aim of this work was to reveal the importance of stomatal behavior in salt tolerance and also the involvement of ABA in its control. Salinity stress brought about a reduction in stomatal conductance in both cultivars, but the effect was initially more pronounced in the drought-tolerant cv. Prairie than in the drought-sensitive cv. Michaelovsky. The difference between the two cultivars changed with time, and later on transpiration and stomatal conductance became higher in Prairie than in Michaelovsky. In both the short and the long term, the extent of stomatal closure due to salinity correlated with the level of ABA accumulation in the leaves of the plants. Fast stomatal closure was likely to be responsible for growth resumption after an initial arrest by salt treatment and for the maintenance of extension growth later on, thus enabling its higher rate in Prairie than in Michaelovsky plants. Leaves of Prairie accumulated less toxic chloride ions, which may be the result of a lower transpiration rate observed during the first phase of salt treatment. A subsequent increase in stomatal conductance observed in Prairie is likely to ameliorate their gas exchange and maintain photosynthesis and growth. Thus, differences between the cultivars in the stomatal response to salinity changed with time, which may be why there are discrepancies in the attempts to relate stomatal conductance to salt tolerance observed in literature.
Aob Plants | 2010
Lidia B. Vysotskaya; Peter E. Hedley; G. V. Sharipova; D. S. Veselov; G. R. Kudoyarova; Jennifer Morris; Hamlyn G. Jones
Root hydraulic conductivity was decreased by salinity in barley plants in parallel with slower transpiration rates and a down-regulation of aquaporin expression in the roots. The effects were larger and faster in a more salinity-tolerant line.
Russian Journal of Plant Physiology | 2013
G. R. Kudoyarova; V. P. Kholodova; D. S. Veselov
The review presents current literature data on the mechanisms maintaining plant water balance or those providing for tolerance to its disturbance. We consider the processes enabling the changes in the transpiration rate under water deficit due to changes in stomatal conductivity and the changes in the rate of leaf growth, as well as the role of hydraulic and hormonal (ABA, ethylene, cytokinins) signals in their regulation. Factors involved in the improvement of water use by the regulation of stomatal movements are also regarded, e.g., transcription factors, kinases, GTP-binding proteins, aquaporins participating in CO2 transfer. Negative consequences of stomata closure induced by the disturbances in gas exchange, ROS generation, and accelerated senescence and the ways of their overcoming (with the involvement of antioxidants and cytokinins as factors of senescence delay) are discussed as well. The great attention is paid to the mechanisms maintaining plant growth and transpiration under water deficit due to the optimization of water uptake (modulation of hydraulic conductivity and relative activation of root growth). It is emphasized that the role of ABA in adaptation to water deficit is not limited only to stomatal closure but also concerns the regulation of root growth and assimilate inflow to reproductive organs. Dual significance of this hormone in the growth regulation is considered: direct inhibitory and mediated stimulatory action (via normalization of water relations). The contradictory data about changes in aquaporin capacity for water transfer and their role in the changes of hydraulic conductivity under water deficit are discussed. Apparently, this contradiction may be related to specific features of water transport in various plant species (relative contribution of apoplastic and symplastic pathways) and also to the effects of such factors as an increase in the hydraulic resistance of the apoplast due to the depositions of lignin and suberin, vessel cavitation, and changes in their anatomy on hydraulic conductivity under water deficit.
Russian Journal of Plant Physiology | 2008
D. S. Veselov; I. B. Sabirzhanova; B. E. Sabirzhanov; A. V. Chemeris
Effects of salinity of nutrient solution on expression of ZmEXPA1 expansin gene and leaf growth were studied on maize plants (Zea mays L.). Rapid activation of the gene transcription was shown to precede the resumption of extension growth in leaf cells under water deficit induced by NaCl salinity. Auxins were found to accumulate in leaves during salinity treatment, the accumulation being faster than activation of ZmEXPA1 transcription. In addition, exogenous IAA was shown to enhance the gene expression. Our results indicate that the hormone is involved in regulation of cell extension growth at high salinity through the expression of expansin gene.
Russian Journal of Plant Physiology | 2006
S. V. Veselova; R. G. Farkhutdinov; D. S. Veselov; G. R. Kudoyarova
The influence of an air temperature increase by 4°C and nutrient solution cooling down to 5 ± 1°C on stomatal conductance and hormone level of seven-day-old wheat (Triticum durum L., cv. Bezenchukskaya 139) seedlings was studied. An elevated air temperature resulted in a rapid rise of stomatal conductance preceded by the increase in the level of cytokinins in leaves. Cooling of the nutrient solution induced gradual stomatal closure along with a decreasing cytokinin level in leaves. Hormone concentration in the xylem sap of wheat seedlings was determined, and the rate of hormone transport from the roots to shoots was calculated. The role of cytokinins in the regulation of stomatal conductance under conditions of local thermal treatments is discussed.
Russian Journal of Plant Physiology | 2005
G. R. Akhiyarova; I. B. Sabirzhanova; D. S. Veselov; V. Frike
The effects of sodium-chloride salinity on the leaf elongation rate, transpiration rate, cell sap osmolality, and phytohormone content in 7-day-old shoots of durum wheat (Triticum durum L.) were studied. Leaf growth was suppressed under the salinity stress and resumed 1 h after NaCl removal. The resumption of leaf growth coincided with a decrease in the transpiration rate due to the rapid ABA accumulation in the differentiation leaf zone. The increased IAA concentration in the growing leaf zone promoted the formation of the attraction signal. The authors concluded that the changes in phytohormonal status in wheat plants occurred already following short-term (up to 1 h) salinity and were directed to the maintenance of plant growth under these conditions.
Russian Journal of Plant Physiology | 2007
G. R. Kudoyarova; D. S. Veselov; R. G. Faizov; S. V. Veselova; E. A. Ivanov; R. G. Farkhutdinov
Stomatal response to changes in temperature and humidity was studied in wheat (Triticum aestivum L.) cv. Iren’ cultivated under conditions of high water supply and cv. Kazakhstanskaya 10, which is relatively drought tolerant. Experiments were performed under both laboratory and field conditions. It was demonstrated that stomata of cv. Kazakhstanskaya 10 plants closed rapidly with reducing humidity (the response of the first type), whereas, in cv. Iren’, this response was less expressed and, under conditions of a high water content in soil, stomatal conductance could increase in response to reduced humidity (the response of the second type). At an increased stomatal conductance and transpiration, water content in cv. Iren’ plants was maintained due to the increase in hydraulic conductance and water inflow from the roots. A possible role of the first-type response (rapid stomata closure) for growth maintenance under drought and of the second-type response (a parallel increase in the stomatal and hydraulic conductance) for providing of rapid growth and high productivity under sufficient water supply is discussed. A possibility to use the type of stomata behavior for cultivar assessment is considered.
Russian Journal of Plant Physiology | 2002
D. S. Veselov; I. B. Sabirzhanova; G. R. Akhiyarova; S. V. Veselova; R. G. Farkhutdinov; A. Mustafina; A. N. Mitrichenko; A.V. Dedov; S. Yu. Veselov; G. R. Kudoyarova
The effects of nutrient-solution cooling and PEG addition to the nutrient solution on the phytohormone content, the rate of leaf growth, leaf extensibility under the influence of external mechanical action, osmotic potential, and transpiration were studied in seven-day-old wheat plants. Leaf growth rapidly ceased, and the transpiration rate was reduced in both treatments. Growth cessation induced by PEG was transient, and growth resumption was preceded by an increase in the leaf extensibility. The functional role of auxin accumulation in plant shoots in the control of extensibility as well as the relationship between the ABA accumulation and a decrease in the cytokinin content, on the one hand, and reduced transpiration, on the other hand, under stress conditions are discussed.