D. Sugny
University of Burgundy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Sugny.
Physical Review Letters | 2010
Marc Lapert; Y. Zhang; Michael Braun; Steffen J. Glaser; D. Sugny
We consider the time-optimal control by magnetic fields of a spin 1/2 particle in a dissipative environment. This system is used as an illustrative example to show the role of singular extremals in the control of quantum systems. We analyze a simple case where the control law is explicitly determined. We experimentally implement the optimal control using techniques of nuclear magnetic resonance. To our knowledge, this is the first experimental demonstration of singular extremals in quantum systems with bounded control amplitudes.
Physical Review Letters | 2013
David Daems; A. Ruschhaupt; D. Sugny; S. Guérin
Considering the problem of the control of a two-state quantum system by an external field, we establish a general and versatile method allowing the derivation of smooth pulses which feature the properties of high fidelity, robustness, and low area. Such shaped pulses can be interpreted as a single-shot generalization of the composite pulse-sequence technique with a time-dependent phase.
IEEE Transactions on Automatic Control | 2009
Bernard Bonnard; Monique Chyba; D. Sugny
The objective of this article is to complete preliminary results from the work of Bonnard and Sugny (2009) and Sugny et al. (2007), concerning the time-minimal control of dissipative two-level quantum systems whose dynamics is governed by the Lindblad equation. The extremal system is described by a 3D-Hamiltonian depending upon three parameters. We combine geometric techniques with numerical simulations to deduce the optimal solutions.
Scientific Reports | 2012
Julien Fatome; S. Pitois; Philippe Morin; E. Assémat; D. Sugny; Antonio Picozzi; H. R. Jauslin; Guy Millot; Victor V. Kozlov; Stefan Wabnitz
Wherever the polarization properties of a light beam are of concern, polarizers and polarizing beamsplitters (PBS) are indispensable devices in linear-, nonlinear- and quantum-optical schemes. By the very nature of their operation principle, transformation of incoming unpolarized or partially polarized beams through these devices introduces large intensity variations in the fully polarized outcoming beam(s). Such intensity fluctuations are often detrimental, particularly when light is post-processed by nonlinear crystals or other polarization-sensitive optic elements. Here we demonstrate the unexpected capability of light to self-organize its own state-of-polarization, upon propagation in optical fibers, into universal and environmentally robust states, namely right and left circular polarizations. We experimentally validate a novel polarizing device - the Omnipolarizer, which is understood as a nonlinear dual-mode polarizing optical element capable of operating in two modes - as a digital PBS and as an ideal polarizer. Switching between the two modes of operation requires changing beams intensity.
Physical Review A | 2009
M. Lapert; R. Tehini; Gabriel Turinici; D. Sugny
We propose a monotonically convergent algorithm which can enforce spectral constraints on the control field (and extends to arbitrary filters). The procedure differs from standard algorithms in that at each iteration, the control field is taken as a linear combination of the control field (computed by the standard algorithm) and the filtered field. The parameter of the linear combination is chosen to respect the monotonic behavior of the algorithm and to be as close to the filtered field as possible. We test the efficiency of this method on molecular alignment. Using bandpass filters, we show how to select particular rotational transitions to reach high alignment efficiency. We also consider spectral constraints corresponding to experimental conditions using pulse-shaping techniques. We determine an optimal solution that could be implemented experimentally with this technique.
Siam Journal on Control and Optimization | 2009
Bernard Bonnard; D. Sugny
The objective of this article is to apply recent developments in geometric optimal control to analyze the time minimum control problem of dissipative two-level quantum systems whose dynamics is governed by the Lindblad equation. We focus our analysis on the case where the extremal Hamiltonian is integrable.
IEEE Transactions on Automatic Control | 2012
Bernard Bonnard; Olivier Cots; Steffen J. Glaser; Marc Lapert; D. Sugny; Y. Zhang
The objective of this article is to introduce the tools to analyze the contrast imaging problem in Nuclear Magnetic Resonance. Optimal trajectories can be selected among extremal solutions of the Pontryagin Maximum Principle applied to this Mayer type optimal problem. Such trajectories are associated to the question of extremizing the transfer time. Hence the optimal problem is reduced to the analysis of the Hamiltonian dynamics related to singular extremals and their optimality status. This is illustrated by using the examples of cerebrospinal fluid/water and grey/white matter of cerebrum.
Optics Letters | 2010
E. Assémat; S. Lagrange; Antonio Picozzi; H. R. Jauslin; D. Sugny
We consider the counterpropagating interaction of a signal and a pump beam in an isotropic optical fiber. On the basis of recently developed mathematical techniques, we show that an arbitrary state of polarization of the signal beam can be converted into any other desired state of polarization. On the other hand, an unpolarized signal beam may be repolarized into two specific states of polarization, without loss of energy. Both processes of repolarization and polarization conversion may be controlled by adjusting the polarization state of the backward pump.
Journal of Chemical Physics | 2011
Y. Zhang; M. Lapert; D. Sugny; Michael Braun; Steffen J. Glaser
We consider the time-optimal control of an ensemble of uncoupled spin 1/2 particles in the presence of relaxation and radiation damping effects, whose dynamics is governed by nonlinear equations generalizing the standard linear Bloch equations. For a single spin, the optimal control strategy can be fully characterized analytically. However, in order to take into account the inhomogeneity of the static magnetic field, an ensemble of isochromats at different frequencies must be considered. For this case, numerically optimized pulse sequences are computed and the dynamics under the corresponding optimal field is experimentally demonstrated using nuclear magnetic resonance techniques.
Physical Review A | 2013
A. Garon; Steffen J. Glaser; D. Sugny
We propose an analysis of the time-optimal control of SU(2) quantum operations. By using the Pontryagin Maximum Principle, we show how to determine the optimal trajectory reaching a given target state. Explicit analytical solutions are given for two specific examples. We discuss the role of the detuning in the construction of the optimal synthesis.