D. Tsakogiannis
RMIT University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Tsakogiannis.
Journal of Medical Virology | 2015
D. Tsakogiannis; P. Gortsilas; Zaharoula Kyriakopoulou; I. G. A. Ruether; T.G. Dimitriou; G. Orfanoudakis; Panayotis Markoulatos
Integration of HPV16 DNA into the host chromosome usually disrupts the E1 and/or E2 genes. The present study investigated the disruption of E1, E2 genes in a total of eighty four HPV16‐positive precancerous and cervical cancer specimens derived from Greek women (seventeen paraffin‐embedded cervical biopsies and sixty seven Thin Prep samples). Complete E2 and E1 genes were amplified using three and nine overlapping primer sets respectively, in order to define the sites of disruption. Extensive mapping analysis revealed that disruption/deletion events within E2 gene occurred in high grade and cervical cancer samples (x2 test, P < 0.01), while no evidence of E2 gene disruption was documented among low grade cervical intraepithelial neoplasias. In addition, disruptions within the E1 gene occur both in high and low grade cervical intraepithelial neoplasia. This leads to the assumption that in low grade cervical intraepithelial neoplasias only E1 gene disruption was involved (Fishers exact test, P < 0.05), while in high grade malignancies and cervical cancer cases deletions in both E1 and E2 genes occurred. Furthermore, the most prevalent site of disruption of E1 gene was located between nucleotides 1059 and 1323, while the most prevalent deleted region of the E2 gene was located between nucleotides 3172 and 3649 (E2 hinge region). Therefore, it is proposed that each population has its own profile of frequencies and sites of disruptions and extensive mapping analysis of E1 and E2 genes is mandatory in order to determine suitable markers for HPV16 DNA integration analysis in distinct populations. J. Med. Virol. 87:1973–1980, 2015.
Journal of Clinical Microbiology | 2010
Zaharoula Kyriakopoulou; Evaggelos Dedepsidis; Vaia Pliaka; D. Tsakogiannis; Anastassia Pratti; Stamatina Levidiotou-Stefanou; Panayotis Markoulatos
ABSTRACT An echovirus 3 (Echo3) strain (strain LR31G7) was isolated from a sewage treatment plant in Greece in 2005. Full-genome molecular, phylogenetic, and SimPlot analyses were conducted in order to reveal the evolutionary pathways of the isolate. Nucleotide and phylogenetic analyses of part of the VP1 genomic region revealed that the isolated strain correlates with Echo3 strains isolated during the same year in France and Japan, implying that the same virus circulated in Europe and Asia. LR31G7 was found to be a recombinant that shares the 3′ part of its genome with an Echo25 strain isolated from asymptomatic infants in Norway in 2003. Nucleotide and SimPlot analyses of the VP1-2A junction, where the recombination was located, revealed the exact recombination breakpoint (nucleotides 3357 to 3364). Moreover, there is evidence that recombination events had occurred in 3B-3D region in the evolutionary history of the isolate. Our study indicates that recombination events play major roles in enterovirus evolution and that the circulation of multirecombinant strains with unknown properties could be potentially dangerous for public health.
Virus Genes | 2012
I. G. A. Ruether; D. Tsakogiannis; Vaia Pliaka; Zaharoula Kyriakopoulou; A. Krikelis; Constantina Gartzonika; S. Leveidiotou-Stefanou; Panayotis Markoulatos
Human noroviruses (NoVs) of the Caliciviridae family are a major cause of epidemic gastroenteritis. The NoV genus is genetically diverse and recombination of viral RNA is known to depend upon various immunological and intracellular constraints that may allow the emergence of viable recombinants. In the present study, we report the development of a broadly reactive RT-PCR assay, which allowed the characterization of strain A6 at molecular level, established its genetic relationship at the sub-genogroup level and classified A6 strain at the sub-genotype level. The detection was carried out initially by enzyme-linked immunosorbent assay (ELISA) and the subsequent detection and molecular characterization of NoV strain was achieved by reverse transcription-PCR and sequencing. Based on the sequence analysis, A6 strain was revealed to belong to the GII genogroup of NoVs. Partial ORF1 gene sequencing analysis and complete ORF2 gene sequencing revealed that ORF1 and ORF2 belonged to two distinct genotypes GII/9 and GII/6, respectively, making obvious that A6 strain is a rare intergenotypic recombinant within the genogroup GII between GII.9 and GII.6 genotypes. A6 strain represents the first human NoV from Greece, whose genome has been partially (ORF1&ORF3) and completed (ORF2) sequenced. To our knowledge the recombination event GII.9/GII.6 in RdRp and capsid gene, respectively, that was revealed in the present study is reported for the first time.
Archives of Virology | 2012
D. Tsakogiannis; I. G. A. Ruether; Zaharoula Kyriakopoulou; Vaia Pliaka; A. Theoharopoulou; V. Skordas; E. Panotopoulou; C. Nepka; Panayotis Markoulatos
The E2 gene of human papilloma virus is expressed at the early stage of the viral life cycle, encoding the E2 transcription factor, and regulates the expression of E6 and E7 oncogenes. Disruption of E2 gene due to viral integration inhibits the transcriptional suppression of the HPV oncogenes, inducing cell proliferation. In the present study, a total of 22 HPV16-positive cytological specimens derived from high- and low-grade cervical intraepithelial lesions were investigated in order to identify sequence variations in the HPV16 E2 ORF. The E2 gene was amplified by PCR using external and internal overlapping sets of primers. Amplicons were cloned and sequenced. Disruption sites were detected in cervical samples diagnosed as high-grade cervical intraepithelial lesions. Moreover, sequence variations were identified in the E2 ORF and specific variations were associated with non-European variants such as African type I, African type II and Asian American. A total of three new sequence variations were identified at positions 2791, 2823 (transactivation domain) and 3361 (hinge region). Distinct phylogenetic branches were formed according to E2 analysis that characterized the different HPV16 variants. It was ascertained that non-European variants are circulating in the Greek population.
Clinical Microbiology and Infection | 2011
Zaharoula Kyriakopoulou; Evaggelos Dedepsidis; Vaia Pliaka; D. Tsakogiannis; I. G. A. Ruether; A. Krikelis; Panayotis Markoulatos
The molecular characterization of two enterovirus strains (LR51A5 and LR61G3) isolated from the sewage treatment plant unit in Larissa, Greece, in May and June 2006 and the investigation of their relationship with enteroviruses of the same serotype isolated in Greece in 2001 and 2007 were performed by complete VP1 sequence analysis of the isolates. The close phylogenetic relationship and the high nucleotide similarity (98%) led to the conclusion that the virus isolated from sewage in 2006 was associated with that isolated from an aseptic meningitis outbreak 1 year later. Bootscan analysis of the VP1 genomic region revealed that intraserotypic multi-recombination events might have been involved in the evolutionary past history of the LR51A5 and LR61G3 isolates.
Virus Genes | 2012
Zaharoula Kyriakopoulou; Vaia Pliaka; D. Tsakogiannis; I. G. A. Ruether; Dimitris Komiotis; Constantina Gartzonika; Stamatina Levidiotou-Stefanou; Panayotis Markoulatos
Echovirus 6 (E6) is one of the main enteroviral serotypes that was isolated from cases of aseptic meningitis and encephalitis during the last years in Greece. Two E6 (LR51A5 and LR61G3) were isolated from the sewage treatment plant unit in Larissa, Greece, in May 2006, 1 year before their characterization from aseptic meningitis cases. The two isolates were initially found to be intra-serotypic recombinants in the genomic region VP1, a finding that initiated a full genome sequence analysis. In the present study, nucleotide, amino acid, and phylogenetic analyses for all genomic regions were conducted. For the detection of recombination events, Simplot and bootscan analyses were carried out. The continuous phylogenetic relationship in 2C–3D genomic region of strains LR51A5 and LR61G3 with E30 isolated in France in 2002–2005 indicated that the two strains were recombinants. SimPlot and Bootscan analyses confirmed that LR51A5 and LR61G3 carry an inter-serotypic recombination in the 2C genomic region. The present study provide evidence that recombination events occurred in the regions VP1 (intraserotypic) and non-capsid (interserotypic) during the evolution of LR51A5 and LR61G3, supporting the statement that the genomes of circulating enteroviruses are a mosaic of genomic regions of viral strains of the same or different serotypes. In conclusion, full genome sequence analysis of circulating enteroviral strains is a prerequisite to understand the complexity of enterovirus evolution.
Virus Genes | 2010
Vaia Pliaka; Evaggelos Dedepsidis; Zaharoula Kyriakopoulou; Georgia Papadi; D. Tsakogiannis; Anastassia Pratti; Stamatina Levidiotou-Stefanou; Panayotis Markoulatos
Attenuated strains of Sabin poliovirus vaccine replicate in the human gut and in rare cases may cause vaccine-associated paralytic poliomyelitis (VAPP). Mutations at specific sites of the genome and recombination between Sabin strains may result in the loss of the attenuated phenotype of OPV (Oral Poliovirus Vaccine) strains and the acquisition of traits characteristic of wild polioviruses, such as increased neurovirulence and loss of temperature sensitivity. In this study, we determined the phenotypic traits such as temperature sensitivity and growth kinetics of eight OPV isolates (six bi-recombinant and two non-recombinant). The growth phenotype of each isolate as well as of Sabin vaccine strains in Hep2 cell line at two different temperatures (37 and 40°C) was evaluated using two different assays, RCT test (Reproductive Capacity at different Temperatures) and one-step growth curve analysis. Moreover, the nucleotide and amino acid positions in the genomes of the isolates that have been identified as being involved in the attenuated and thermo sensitive phenotype of Sabin vaccine strains were investigated. Mutations that result in loss of the attenuated and thermo sensitive phenotype of Sabin vaccine strains were identified in the genomes of all isolates. Both mutations and recombination events correlated well with the reverted phenotypic traits of OPV-derivatives. In the post-eradication era of wild polioviruses, the identification and the characterization (genomic and phenotypic) of vaccine-derived polioviruses become increasingly important in order to prevent cases or even outbreaks of paralytic poliomyelitis caused by neurovirulent strains.
Molecular and Cellular Probes | 2010
Vaia Pliaka; Evaggelos Dedepsidis; Zaharoula Kyriakopoulou; K. Mpirli; D. Tsakogiannis; A. Pratti; Stamatina Levidiotou-Stefanou; Panayotis Markoulatos
In the post-eradication era of wild polioviruses, the only remaining sources of poliovirus infection worldwide would be the vaccine-derived polioviruses (VDPVs). As the preponderance of countries certified to be polio-free has switched from OPV (oral poliovirus vaccine) to IPV (inactivated poliovirus vaccine), importation of recombinant evolved derivatives of vaccinal strains would have serious implication for public health. To test the robustness of the proposed RT-PCR screening analysis, eleven recombinant vaccine-derived polioviruses that were characterized previously by sequencing by our group, in addition to three recently identified recombinant environmental isolates were assayed. Although the most definitive characterization of VDPVs is by genomic sequencing, in this study we describe a new, inexpensive and broadly applicable RT-PCR assay for the identification of the predominant recombination types S3/Sx in 2C and S2/Sx in 3D genomic regions respectively of VDPVs, that can be readily implemented in laboratories lacking sequencing facilities as a first approach for the early detection of vaccine-derived poliovirus (VDPVs).
Molecular and Cellular Probes | 2014
I. G. A. Ruether; T.G. Dimitriou; D. Tsakogiannis; Zaharoula Kyriakopoulou; Grigoris D. Amoutzias; Constantina Gartzonika; Stamatina Levidiotou-Stefanou; Panayotis Markoulatos
Noroviruses (NoVs) are a major causative agent of acute gastroenteritis in humans. They are members of the Caliciviridae family and based on the genetic analysis of the RdRp and capsid regions, human NoVs are divided into three genogroups (Gs), GI, GII, and GIV. The three genogroups further segregate into distinct lineages called genotypes. The NoV genus is genetically diverse and recombination of viral RNA is known to depend upon various immunological and intracellular constraints that may allow the emergence of viable recombinants. In this study, three Noroviral strains detected in clinical samples revealed two hitherto unobserved recombination events between GII.9/GII.4 and GII.9/GI.7 genogroups. To our knowledge, these intergenotype and intergenogroup recombination events of GII.9/GII.4 and GII.9/GI.7, in ORF1 and ORF2 genes respectively are reported for the first time and highlight the ongoing evolution of noroviruses.
Infection, Genetics and Evolution | 2015
Zaharoula Kyriakopoulou; Magda Bletsa; D. Tsakogiannis; T.G. Dimitriou; Grigoris D. Amoutzias; Constantina Gartzonika; Stamatina Levidiotou-Stefanou; Panayotis Markoulatos
Echovirus 3 (E3) serotype has been related with several neurologic diseases, although it constitutes one of the rarely isolated serotypes, with no report of epidemics in Europe. The aim of the present study was to provide insights into the molecular epidemiology and evolution of this enterovirus serotype, while an E3 strain was isolated from sewage in Greece, four years after the initial isolation of the only reported E3 strain in the same geographical region. Phylogenetic analysis of the complete VP1 genomic region of that E3 strain and of those available in GenBank suggested three main genogroups that were further subdivided into seven subgenogroups. Further evolutionary analysis suggested that VP1 genomic region of E3 was dominated by purifying selection, as the vast majority of genetic diversity presumably occurred through synonymous nucleotide substitutions and the substitution rate for complete and partial VP1 sequences was calculated to be 8.13×10(-3) and 7.72×10(-3) substitutions/site/year respectively. The partial VP1 sequence analysis revealed the composite epidemiology of this serotype, as the strains of the three genogroups presented different epidemiological characteristics.