D. Vergani
INAF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Vergani.
The Astrophysical Journal | 2009
O. Ilbert; P. Capak; M. Salvato; H. Aussel; H. J. McCracken; D. B. Sanders; N. Z. Scoville; J. Kartaltepe; S. Arnouts; E. Le Floc'h; Bahram Mobasher; Y. Taniguchi; F. Lamareille; A. Leauthaud; Shunji S. Sasaki; D. Thompson; M. Zamojski; G. Zamorani; S. Bardelli; M. Bolzonella; A. Bongiorno; M. Brusa; Karina Caputi; C. M. Carollo; T. Contini; R. Cook; G. Coppa; O. Cucciati; S. de la Torre; L. de Ravel
We present accurate photometric redshifts in the 2-deg2 COSMOS field. The redshifts are computed with 30 broad, intermediate, and narrow bands covering the UV (GALEX), Visible-NIR (Subaru, CFHT, UKIRT and NOAO) and mid-IR (Spitzer/IRAC). A chi2 template-fitting method (Le Phare) was used and calibrated with large spectroscopic samples from VLT-VIMOS and Keck-DEIMOS. We develop and implement a new method which accounts for the contributions from emission lines (OII, Hbeta, Halpha and Ly) to the spectral energy distributions (SEDs). The treatment of emission lines improves the photo-z accuracy by a factor of 2.5. Comparison of the derived photo-z with 4148 spectroscopic redshifts (i.e. Delta z = zs - zp) indicates a dispersion of sigma_{Delta z/(1+zs)}=0.007 at i<22.5, a factor of 2-6 times more accurate than earlier photo-z in the COSMOS, CFHTLS and COMBO-17 survey fields. At fainter magnitudes i<24 and z<1.25, the accuracy is sigma_{Delta z/(1+zs)}=0.012. The deep NIR and IRAC coverage enables the photo-z to be extended to z~2 albeit with a lower accuracy (sigma_{Delta z/(1+zs)}=0.06 at i~24). The redshift distribution of large magnitude-selected samples is derived and the median redshift is found to range from z=0.66 at 22
Astrophysical Journal Supplement Series | 2007
S. Lilly; O. Le Fèvre; A. Renzini; G. Zamorani; M. Scodeggio; T. Contini; C. M. Carollo; G. Hasinger; J.-P. Kneib; A. Iovino; V. Le Brun; C. Maier; V. Mainieri; M. Mignoli; J. D. Silverman; L. Tasca; M. Bolzonella; A. Bongiorno; D. Bottini; P. Capak; Karina Caputi; A. Cimatti; O. Cucciati; Emanuele Daddi; R. Feldmann; P. Franzetti; B. Garilli; L. Guzzo; O. Ilbert; P. Kampczyk
zCOSMOS is a large-redshift survey that is being undertaken in the COSMOS field using 600 hr of observation with the VIMOS spectrograph on the 8 m VLT. The survey is designed to characterize the environments of COSMOS galaxies from the 100 kpc scales of galaxy groups up to the 100 Mpc scale of the cosmic web and to produce diagnostic information on galaxies and active galactic nuclei. The zCOSMOS survey consists of two parts: (1) zCOSMOSbright, a magnitude-limited I-band I_(AB) < 22.5 sample of about 20,000 galaxies with 0.1 < z < 1.2 covering the whole 1.7 deg^2 COSMOS ACS field, for which the survey parameters at z ~ 0.7 are designed to be directly comparable to those of the 2dFGRS at z ~ 0.1; and (2) zCOSMOS-deep, a survey of approximately 10,000 galaxies selected through color-selection criteria to have 1.4 < z < 3.0, within the central 1 deg^2. This paper describes the survey design and the construction of the target catalogs and briefly outlines the observational program and the data pipeline. In the first observing season, spectra of 1303 zCOSMOS-bright targets and 977 zCOSMOS-deep targets have been obtained. These are briefly analyzed to demonstrate the characteristics that may be expected from zCOSMOS, and particularly zCOSMOS-bright, when it is finally completed between 2008 and 2009. The power of combining spectroscopic and photometric redshifts is demonstrated, especially in correctly identifying the emission line in single-line spectra and in determining which of the less reliable spectroscopic redshifts are correct and which are incorrect. These techniques bring the overall success rate in the zCOSMOS-bright so far to almost 90% and to above 97% in the 0.5 < z < 0.8 redshift range. Our zCOSMOS-deep spectra demonstrate the power of our selection techniques to isolate high-redshift galaxies at 1.4 < z < 3.0 and of VIMOS to measure their redshifts using ultraviolet absorption lines.
Nature | 2008
L. Guzzo; M. Pierleoni; B. Meneux; E. Branchini; O. Le Fèvre; C. Marinoni; B. Garilli; Jeremy Blaizot; G. De Lucia; A. Pollo; H. J. McCracken; D. Bottini; V. Le Brun; D. Maccagni; J. P. Picat; R. Scaramella; M. Scodeggio; L. Tresse; G. Vettolani; A. Zanichelli; C. Adami; S. Arnouts; S. Bardelli; M. Bolzonella; A. Bongiorno; A. Cappi; S. Charlot; P. Ciliegi; T. Contini; O. Cucciati
Observations of distant supernovae indicate that the Universe is now in a phase of accelerated expansion the physical cause of which is a mystery. Formally, this requires the inclusion of a term acting as a negative pressure in the equations of cosmic expansion, accounting for about 75 per cent of the total energy density in the Universe. The simplest option for this ‘dark energy’ corresponds to a ‘cosmological constant’, perhaps related to the quantum vacuum energy. Physically viable alternatives invoke either the presence of a scalar field with an evolving equation of state, or extensions of general relativity involving higher-order curvature terms or extra dimensions. Although they produce similar expansion rates, different models predict measurable differences in the growth rate of large-scale structure with cosmic time. A fingerprint of this growth is provided by coherent galaxy motions, which introduce a radial anisotropy in the clustering pattern reconstructed by galaxy redshift surveys. Here we report a measurement of this effect at a redshift of 0.8. Using a new survey of more than 10,000 faint galaxies, we measure the anisotropy parameter β = 0.70 ± 0.26, which corresponds to a growth rate of structure at that time of f = 0.91 ± 0.36. This is consistent with the standard cosmological-constant model with low matter density and flat geometry, although the error bars are still too large to distinguish among alternative origins for the accelerated expansion. The correct origin could be determined with a further factor-of-ten increase in the sampled volume at similar redshift.
The Astrophysical Journal | 2011
R. Genzel; S. Newman; Terry Jay Jones; N. M. Förster Schreiber; Kristen L. Shapiro; Shy Genel; S. Lilly; A. Renzini; L. J. Tacconi; N. Bouché; Andreas Burkert; G. Cresci; Peter Buschkamp; C. M. Carollo; Daniel Ceverino; R. Davies; Avishai Dekel; F. Eisenhauer; E. K. S. Hicks; J. Kurk; D. Lutz; C. Mancini; Thorsten Naab; Yingjie Peng; A. Sternberg; D. Vergani; G. Zamorani
We have studied the properties of giant star-forming clumps in five z ~ 2 star-forming disks with deep SINFONI AO spectroscopy at the ESO VLT. The clumps reside in disk regions where the Toomre Q-parameter is below unity, consistent with their being bound and having formed from gravitational instability. Broad H?/[N II] line wings demonstrate that the clumps are launching sites of powerful outflows. The inferred outflow rates are comparable to or exceed the star formation rates, in one case by a factor of eight. Typical clumps may lose a fraction of their original gas by feedback in a few hundred million years, allowing them to migrate into the center. The most active clumps may lose much of their mass and disrupt in the disk. The clumps leave a modest imprint on the gas kinematics. Velocity gradients across the clumps are 10-40 km s?1 kpc?1, similar to the galactic rotation gradients. Given beam smearing and clump sizes, these gradients may be consistent with significant rotational support in typical clumps. Extreme clumps may not be rotationally supported; either they are not virialized or they are predominantly pressure supported. The velocity dispersion is spatially rather constant and increases only weakly with star formation surface density. The large velocity dispersions may be driven by the release of gravitational energy, either at the outer disk/accreting streams interface, and/or by the clump migration within the disk. Spatial variations in the inferred gas phase oxygen abundance are broadly consistent with inside-out growing disks, and/or with inward migration of the clumps.
Astrophysical Journal Supplement Series | 2009
S. J. Lilly; Vincent Le Brun; C. Maier; V. Mainieri; Marco Mignoli; M. Scodeggio; Gianni Zamorani; Marcella Carollo; T. Contini; Jean-Paul Kneib; Olivier Le Fevre; A. Renzini; S. Bardelli; M. Bolzonella; A. Bongiorno; Karina Caputi; G. Coppa; O. Cucciati; Sylvain de la Torre; Loic de Ravel; P. Franzetti; Bianca Garilli; A. Iovino; P. Kampczyk; K. Kovac; C. Knobel; F. Lamareille; Jean-Francois Le Borgne; R. Pello; Yingjie Peng
We present spectroscopic redshifts of a large sample of galaxies with I_(AB) < 22.5 in the COSMOS field, measured from spectra of 10,644 objects that have been obtained in the first two years of observations in the zCOSMOS-bright redshift survey. These include a statistically complete subset of 10,109 objects. The average accuracy of individual redshifts is 110 km s^(–1), independent of redshift. The reliability of individual redshifts is described by a Confidence Class that has been empirically calibrated through repeat spectroscopic observations of over 600 galaxies. There is very good agreement between spectroscopic and photometric redshifts for the most secure Confidence Classes. For the less secure Confidence Classes, there is a good correspondence between the fraction of objects with a consistent photometric redshift and the spectroscopic repeatability, suggesting that the photometric redshifts can be used to indicate which of the less secure spectroscopic redshifts are likely right and which are probably wrong, and to give an indication of the nature of objects for which we failed to determine a redshift. Using this approach, we can construct a spectroscopic sample that is 99% reliable and which is 88% complete in the sample as a whole, and 95% complete in the redshift range 0.5 < z < 0.8. The luminosity and mass completeness levels of the zCOSMOS-bright sample of galaxies is also discussed.
The Astrophysical Journal | 2010
M. Brusa; F. Civano; A. Comastri; Takamitsu Miyaji; M. Salvato; G. Zamorani; N. Cappelluti; F. Fiore; G. Hasinger; V. Mainieri; Andrea Merloni; A. Bongiorno; P. Capak; M. Elvis; R. Gilli; Heng Hao; Knud Jahnke; Anton M. Koekemoer; O. Ilbert; E. Le Floc'h; E. Lusso; M. Mignoli; E. Schinnerer; J. D. Silverman; Ezequiel Treister; J. D. Trump; C. Vignali; M. Zamojski; T. Aldcroft; H. Aussel
We report the final optical identifications of the medium-depth (~60 ksec), contiguous (2 deg^2) XMM-Newton survey of the COSMOS field. XMM-Newton has detected ~800 X-ray sources down to limiting fluxes of ~5x10^{-16}, ~3x10^{-15}, and ~7x10^{-15} erg/cm2/s in the 0.5-2 keV, 2-10 keV and 5-10 keV bands, respectively. The work is complemented by an extensive collection of multi-wavelength data from 24 micron to UV, available from the COSMOS survey, for each of the X-ray sources, including spectroscopic redshifts for ~50% of the sample, and high-quality photometric redshifts for the rest. The XMM and multiwavelength flux limits are well matched: 1760 (98%) of the X-ray sources have optical counterparts, 1711 (~95%) have IRAC counterparts, and 1394 (~78%) have MIPS 24micron detections. Thanks to the redshift completeness (almost 100%) we were able to constrain the high-luminosity tail of the X-ray luminosity function confirming that the peak of the number density of logL_X>44.5 AGN is at z~2. Spectroscopically-identified obscured and unobscured AGN, as well as normal and starforming galaxies, present well-defined optical and infrared properties. We devised a robust method to identify a sample of ~150 high redshift (z>1), obscured AGN candidates for which optical spectroscopy is not available. We were able to determine that the fraction of the obscured AGN population at the highest (L_X>10^{44} erg s^{-1}) X-ray luminosity is ~15-30% when selection effects are taken into account, providing an important observational constraint for X-ray background synthesis. We studied in detail the optical spectrum and the overall spectral energy distribution of a prototypical Type 2 QSO, caught in a stage transitioning from being starburst dominated to AGN dominated, which was possible to isolate only thanks to the combination of X-ray and infrared observations.
The Astrophysical Journal | 2010
Andrea Merloni; A. Bongiorno; M. Bolzonella; M. Brusa; F. Civano; A. Comastri; M. Elvis; F. Fiore; R. Gilli; Heng Hao; Knud Jahnke; Anton M. Koekemoer; E. Lusso; V. Mainieri; M. Mignoli; Takamitsu Miyaji; A. Renzini; M. Salvato; J. D. Silverman; Jonathan R. Trump; C. Vignali; G. Zamorani; P. Capak; S. J. Lilly; D. B. Sanders; Yoshiaki Taniguchi; S. Bardelli; C. M. Carollo; Karina Caputi; T. Contini
We report on the measurement of the physical properties (rest-frame K-band luminosity and total stellar mass) of the hosts of 89 broad-line (type-1) active galactic nuclei (AGNs) detected in the zCOSMOS survey in the redshift range 1 < z < 2.2. The unprecedented multi-wavelength coverage of the survey field allows us to disentangle the emission of the host galaxy from that of the nuclear black hole in their spectral energy distributions (SEDs). We derive an estimate of black hole masses through the analysis of the broad Mg II emission lines observed in the medium-resolution spectra taken with VIMOS/VLT as part of the zCOSMOS project. We found that, as compared to the local value, the average black hole to host-galaxy mass ratio appears to evolve positively with redshift, with a best-fit evolution of the form (1 + z)^[(0.68±0.12)^(+0.6)_(-0.3)], where the large asymmetric systematic errors stem from the uncertainties in the choice of initial mass function, in the calibration of the virial relation used to estimate BH masses and in the mean QSO SED adopted. On the other hand, if we consider the observed rest-frame K-band luminosity, objects tend to be brighter, for a given black hole mass, than those on the local M_(BH)-M_K relation. This fact, together with more indirect evidence from the SED fitting itself, suggests that the AGN hosts are likely actively star-forming galaxies. A thorough analysis of observational biases induced by intrinsic scatter in the scaling relations reinforces the conclusion that an evolution of the M_(BH)-M_* relation must ensue for actively growing black holes at early times: either its overall normalization, or its intrinsic scatter (or both) appear to increase with redshift. This can be interpreted as signature of either a more rapid growth of supermassive black holes at high redshift, a change of structural properties of AGN hosts at earlier times, or a significant mismatch between the typical growth times of nuclear black holes and host galaxies. In any case, our results provide important clues on the nature of the early co-evolution of black holes and galaxies and challenging tests for models of AGN feedback and self-regulated growth of structures.
Astronomy and Astrophysics | 2007
S. Arnouts; Carl Jakob Walcher; O. Le Fèvre; G. Zamorani; O. Ilbert; V. Le Brun; L. Pozzetti; S. Bardelli; L. Tresse; E. Zucca; S. Charlot; F. Lamareille; H. J. McCracken; M. Bolzonella; A. Iovino; Carol J. Lonsdale; Maria del Carmen Polletta; Jason A. Surace; D. Bottini; B. Garilli; D. Maccagni; J. P. Picat; R. Scaramella; M. Scodeggio; G. Vettolani; A. Zanichelli; C. Adami; A. Cappi; P. Ciliegi; T. Contini
(abridged abstract) We present an analysis of the stellar mass growth over the last 10 Gyrs using a large 3.6
Journal of Cosmology and Astroparticle Physics | 2012
M. Moresco; A. Cimatti; Raul Jimenez; L. Pozzetti; G. Zamorani; M. Bolzonella; James Dunlop; F. Lamareille; M. Mignoli; H. Pearce; P. Rosati; D. Stern; Licia Verde; E. Zucca; C. M. Carollo; T. Contini; Jean-Paul Kneib; O. Le Fèvre; S. J. Lilly; V. Mainieri; A. Renzini; M. Scodeggio; I. Balestra; R. Gobat; Ross J. McLure; S. Bardelli; A. Bongiorno; Karina Caputi; O. Cucciati; S. de la Torre
\mu
The Astrophysical Journal | 2009
J. D. Silverman; F. Lamareille; C. Maier; S. J. Lilly; V. Mainieri; M. Brusa; N. Cappelluti; G. Hasinger; G. Zamorani; M. Scodeggio; M. Bolzonella; T. Contini; C. M. Carollo; Knud Jahnke; Jean-Paul Kneib; O. Le Fèvre; Andrea Merloni; S. Bardelli; A. Bongiorno; H. Brunner; Karina Caputi; F. Civano; A. Comastri; G. Coppa; O. Cucciati; S. de la Torre; L. de Ravel; M. Elvis; A. Finoguenov; F. Fiore
selected sample. We split our sample into active (blue) and quiescent (red) galaxies. Our measurements of the K-LFs and LD evolution support the idea that a large fraction of galaxies is already assembled at