D. Vetrugno
University of Trento
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Vetrugno.
Astronomy and Astrophysics | 2011
F. De Paolis; V. G. Gurzadyan; G. Ingrosso; Ph. Jetzer; A. A. Nucita; Asghar Qadir; D. Vetrugno; A. L. Kashin; H. G. Khachatryan; S. Mirzoyan
Data on the cosmic microwave background (CMB) radiation by the Wilkinson Microwave Anisotropy Probe (WMAP) had a profound impact on the understanding of a variety of physical processes in the early phases of the Universe and on the estimation of the cosmological parameters. Here, the 7-year WMAP data are used to trace the disk and the halo of the nearby giant spiral galaxy M 31. We analyzed the temperature excess in three WMAP bands (W, V , and Q) by dividing the region of the sky around M 31 into several concentric circular areas. An asymmetry in the mean microwave temperature in the M 31 disk along the direction of the M 31 rotation is observed with a temperature contrast up to 130 μK/pixel. We also find a temperature asymmetry in the M 31 halo, which is much weaker than for the disk, up to a galactocentric distance of about 10◦ ( 120 kpc) with a peak temperature contrast of about 40 μK/pixel. We studied the robustness of these possible detections by considering 500 random control fields in the real WMAP maps and simulating 500 sky maps from the best-fitted cosmological parameters. By comparing the obtained temperature contrast profiles with the real ones towards the M 31 galaxy, we find that the temperature asymmetry in the M 31 disk is fairly robust, while the effect in the halo is weaker. Although the confidence level of the signal is not high, if estimated purely statistically, which could be expected due to the weakness of the effect, the geometrical structure of the temperature asymmetry points towards a definite effect modulated by the rotation of the M 31 halo. This result might open a new way to probe these relatively less studied galactic objects using high-accuracy CMB measurements, such as those with the Planck satellite or planned balloon-based experiments, which could prove or disprove our conclusions.
Physical Review D | 2014
S. Vitale; Giuseppe Congedo; R. Dolesi; V. Ferroni; M. Hueller; D. Vetrugno; W. J. Weber; H. Audley; Karsten Danzmann; I. Diepholz; M. Hewitson; N. Korsakova; L. Ferraioli; F. Gibert; Nikolaos Karnesis; M. Nofrarias; H. Inchauspé; E. Plagnol; Oliver Jennrich; Paul McNamara; M. Armano; James Ira Thorpe; P. Wass
LISA Pathfinder (LPF), the precursor mission to a gravitational wave observatory of the European Space Agency, will measure the degree to which two test masses can be put into free fall, aiming to demonstrate a suppression of disturbance forces corresponding to a residual relative acceleration with a power spectral density (PSD) below (30 fm/sq s/Hz)(sup 2) around 1 mHz. In LPF data analysis, the disturbance forces are obtained as the difference between the acceleration data and a linear combination of other measured data series. In many circumstances, the coefficients for this linear combination are obtained by fitting these data series to the acceleration, and the disturbance forces appear then as the data series of the residuals of the fit. Thus the background noise or, more precisely, its PSD, whose knowledge is needed to build up the likelihood function in ordinary maximum likelihood fitting, is here unknown, and its estimate constitutes instead one of the goals of the fit. In this paper we present a fitting method that does not require the knowledge of the PSD of the background noise. The method is based on the analytical marginalization of the posterior parameter probability density with respect to the background noise PSD, and returns an estimate both for the fitting parameters and for the PSD. We show that both these estimates are unbiased, and that, when using averaged Welchs periodograms for the residuals, the estimate of the PSD is consistent, as its error tends to zero with the inverse square root of the number of averaged periodograms. Additionally, we find that the method is equivalent to some implementations of iteratively reweighted least-squares fitting. We have tested the method both on simulated data of known PSD and on data from several experiments performed with the LISA Pathfinder end-to-end mission simulator.
Astronomy and Astrophysics | 2011
V. G. Gurzadyan; A. E. Allahverdyan; T. Ghahramanyan; A. L. Kashin; H. G. Khachatryan; A. A. Kocharyan; S. Mirzoyan; E. Poghosian; D. Vetrugno; G. Yegorian
Cosmic microwave background (CMB) radiation is characterized by well-established scales, the 2.7 K temperature of the Planckian spectrum and the 10 −5 amplitude of the temperature anisotropy. These features were instrumental in indicating the hot and equilibrium phases of the early history of the Universe and its large-scale isotropy, respectively. We now reveal one more intrinsic scale in CMB properties. We introduce a method developed originally by Kolmogorov, which quantifies a degree of randomness (chaos) in a set of numbers, such as measurements of the CMB temperature in a given region. Considering CMB as a composition of random and regular signals, we solve the inverse problem of recovering of their mutual fractions from the temperature sky maps. Deriving the empirical Kolmogorov’s function in the Wilkinson Microwave Anisotropy Probe’s maps, we obtain the fraction of the random signal to be about 20 per cent; i.e., the cosmological sky is a weakly random one. The paper is dedicated to the memory of Vladimir Arnold (1937–2010).Cosmic microwave background (CMB) radiation is characterized by well-established scales, the 2.7 K temperature of the Planckian spectrum and the 10−5 amplitude of the temperature anisotropy. These features were instrumental in indicating the hot and equilibrium phases of the early history of the Universe and its large-scale isotropy, respectively. We now reveal one more intrinsic scale in CMB properties. We introduce a method developed originally by Kolmogorov, which quantifies a degree of randomness (chaos) in a set of numbers, such as measurements of the CMB temperature in a given region. Considering CMB as a composition of random and regular signals, we solve the inverse problem of recovering of their mutual fractions from the temperature sky maps. Deriving the empirical Kolmogorov’s function in the Wilkinson Microwave Anisotropy Probe’s maps, we obtain the fraction of the random signal to be about 20 per cent; i.e., the cosmological sky is a weakly random one. The paper is dedicated to the memory of Vladimir Arnold (1937-2010).
Astronomy and Astrophysics | 2013
A. A. Nucita; L. Manni; F. De Paolis; D. Vetrugno; G. Ingrosso
We report the results of a deep archive XMM-Newton observation of the Fornax spheroidal galaxy that we analyzed with the aim of fully characterizing the X-ray source population (in most of the cases likely to be background active galactic nuclei) detected towards the target. A cross correlation with the available databases allowed us to find a source that may be associated with a variable star belonging to the galaxy. We also searched for X-ray sources in the vicinity of the Fornax globular clusters GC 3 and GC 4 and found two sources probably associated with the respective clusters. The deep X-ray observation was also suitable for the search of the intermediate-mass black hole (of mass � 10 4 M� ) expected to be hosted in the center of the galaxy. In the case of Fornax, this search is extremely difficult since the galaxy centroid of gravity is poorly constrained because of the large asymmetry observed in the optical surface brightness. Since we cannot firmly establish the existence of an X-ray counterpart of the putative black hole, we put constraints only on the accretion parameters. In particular, we found that the corresponding upper limit on the accretion efficiency, with respect to the Eddington luminosity, is as low as a few 10 −5 .
Astronomy and Astrophysics | 2009
V. G. Gurzadyan; A. L. Kashin; H. G. Khachatryan; A. A. Kocharyan; E. Poghosian; D. Vetrugno; G. Yegorian
The power spectrum is obtained for the Kolmogorov stochasticity parameter map for WMAP’s cosmic microwave background (CMB) radiation temperature datasets. The interest for CMB Kolmogorov map is that it can carry direct information about voids in the matter distribution, so that the correlations in the distribution of voids have to be reflected in the power spectrum. Although limited by the angular resolution of the WMAP, this analysis shows the possibility of acquiring this crucial information via CMB maps. Even the already obtained behavior, some of which is absent in the simulated maps, can influence the development of views on the void correlations at the large-scale web formation.
Astronomy and Astrophysics | 2018
V. G. Gurzadyan; F. De Paolis; A. A. Nucita; A. L. Kashin; A. Amekhyan; S. Sargsyan; G. Yegorian; Asghar Qadir; G. Ingrosso; Ph. Jetzer; D. Vetrugno
This paper is a follow-up of a previous paper about the M82 galaxy and its halo based on Planck observations. As in the case of M82, so also for the M81 galaxy a substantial North-South and East-West temperature asymmetry is found, extending up to galactocentric distances of about
Classical and Quantum Gravity | 2016
M. Armano; H. Audley; G. Auger; J. Baird; P. Binetruy; M. Born; D. Bortoluzzi; N. Brandt; A. Bursi; M. Caleno; A. Cavalleri; A. Cesarini; M. Cruise; Karsten Danzmann; M. de Deus Silva; D. Desiderio; E Piersanti; I. Diepholz; R. Dolesi; N. Dunbar; L. Ferraioli; V. Ferroni; E. Fitzsimons; R. Flatscher; M. Freschi; J. Gallegos; C. García Marirrodriga; R. Gerndt; L. Gesa; F. Gibert
1.5^\circ
The Astrophysical Journal | 2018
M. Armano; H. Audley; J. Baird; M. Bassan; S. Benella; P. Binetruy; M. Born; D. Bortoluzzi; A. Cavalleri; A. Cesarini; A. M. Cruise; Karsten Danzmann; M. de Deus Silva; I. Diepholz; G. Dixon; R. Dolesi; M Fabi; L. Ferraioli; V. Ferroni; N. Finetti; E.D. Fitzsimons; M. Freschi; L. Gesa; F. Gibert; Domenico Giardini; R. Giusteri; C. Grimani; J. Grzymisch; I. Harrison; Gerhard Heinzel
. The temperature asymmetry is almost frequency independent and can be interpreted as a Doppler-induced effect related to the M81 halo rotation and/or triggered by the gravitational interaction of the galaxies within the M81 Group. Along with the analogous study of several nearby edge-on spiral galaxies, the CMB temperature asymmetry method thus is shown to act as a direct tool to map the galactic haloes and/or the intergalactic bridges, invisible in other bands or by other methods.
Astroparticle Physics | 2018
M. Armano; H. Audley; J. Baird; P. Binetruy; M. Born; D. Bortoluzzi; E. Castelli; A. Cavalleri; A. Cesarini; A. M. Cruise; Karsten Danzmann; M. de Deus Silva; I. Diepholz; G. Dixon; R. Dolesi; L. Ferraioli; V. Ferroni; N. Finetti; E.D. Fitzsimons; M. Freschi; L. Gesa; F. Gibert; Domenico Giardini; R. Giusteri; C. Grimani; J. Grzymisch; I. Harrison; Gerhard Heinzel; M. Hewitson; D. Hollington
LISA Pathfinder satellite has been launched on 3th December 2015 toward the Sun-Earth first Lagrangian point (L1) where the LISA Technology Package (LTP), which is the main science payload, will be tested. With its cutting-edge technology, the LTP will provide the ability to achieve unprecedented geodesic motion residual acceleration measurements down to the order of
Journal of Physics: Conference Series | 2015
F. Gibert; M. Nofrarias; M. Armano; H. Audley; G. Auger; J. Baird; P. Binetruy; M. Born; D. Bortoluzzi; N. Brandt; A. Bursi; M. Caleno; A. Cavalleri; A. Cesarini; M. Cruise; Karsten Danzmann; I. Diepholz; R. Dolesi; N. Dunbar; L. Ferraioli; V. Ferroni; E. Fitzsimons; M. Freschi; J. Gallegos; C. García Marirrodriga; R. Gerndt; L Gesa; Domenico Giardini; R. Giusteri; C. Grimani
3 \times 10^{-14}\,\mathrm{m/s^2/{Hz^{1/2}}}