D. W. Kurtz
University of Central Lancashire
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. W. Kurtz.
web science | 1991
D. E. Winget; R. E. Nather; J. C. Clemens; J. L. Provencal; S. J. Kleinman; P. A. Bradley; Matt A. Wood; C. F. Claver; Marian Frueh; A. D. Grauer; B. P. Hine; C. J. Hansen; G. Fontaine; N. Achilleos; D. T. Wickramasinghe; T. M. K. Marar; S. Seetha; B. N. Ashoka; D. O'Donoghue; Brian Warner; D. W. Kurtz; David A. H. Buckley; J. Brickhill; G. Vauclair; N. Dolez; M. Chevreton; M. A. Barstow; J.-E. Solheim; A. Kanaan; S. O. Kepler
Results are reported from 264.1 hr of nearly continuous time-series photometry on the pulsating prewhite dwarf star (DPV) PG 1159 - 035. The power spectrum of the data set is completely resolved into 125 individual frequencies; 101 of them are identified with specific quantized pulsation modes, and the rest are completely consistent with such modal assignment. It is argued that the luminosity variations are certainly the result of g-mode pulsations. Although the amplitudes of some of the peaks exhibit significant variations on the time scales of a year or so, the underlying frequency structure of the pulsations is stable over much longer intervals. The existing linear theory is invoked to determine, or strongly constrain, many of the fundamental physical parameters describing this star. Its mass is found to be 0.586 solar mass, is rotation period 1.38 days, its magnetic field less than 6000 G, its pulsation and rotation axes to be aligned, and its outer layers to be compositionally stratified.
Nature | 2007
R. Silvotti; S. Schuh; R. Janulis; J.-E. Solheim; Stefano Bernabei; Roy Ostensen; Terry D. Oswalt; I Bruni; R Gualandi; Alfio Bonanno; G Vauclair; M. D. Reed; Cathy W. S. Chen; E. M. Leibowitz; M. Paparó; A. Baran; S. Charpinet; N Dolez; S. D. Kawaler; D. W. Kurtz; P Moskalik; R Riddle; S. Zola
After the initial discoveries fifteen years ago, over 200 extrasolar planets have now been detected. Most of them orbit main-sequence stars similar to our Sun, although a few planets orbiting red giant stars have been recently found. When the hydrogen in their cores runs out, main-sequence stars undergo an expansion into red-giant stars. This expansion can modify the orbits of planets and can easily reach and engulf the inner planets. The same will happen to the planets of our Solar System in about five billion years and the fate of the Earth is matter of debate. Here we report the discovery of a planetary-mass body (Msini = 3.2MJupiter) orbiting the star V 391 Pegasi at a distance of about 1.7 astronomical units (au), with a period of 3.2 years. This star is on the extreme horizontal branch of the Hertzsprung–Russell diagram, burning helium in its core and pulsating. The maximum radius of the red-giant precursor of V 391 Pegasi may have reached 0.7 au, while the orbital distance of the planet during the stellar main-sequence phase is estimated to be about 1 au. This detection of a planet orbiting a post-red-giant star demonstrates that planets with orbital distances of less than 2 au can survive the red-giant expansion of their parent stars.
Astrophysical Journal Supplement Series | 2011
William F. Welsh; Jerome A. Orosz; Conny Aerts; Timothy M. Brown; Erik Brugamyer; William D. Cochran; Ronald L. Gilliland; Joyce Ann Guzik; D. W. Kurtz; David W. Latham; Geoffrey W. Marcy; Samuel N. Quinn; Wolfgang Zima; Christopher Allen; Natalie M. Batalha; Steve Bryson; Lars A. Buchhave; Douglas A. Caldwell; Thomas N. Gautier; Steve B. Howell; Karen Kinemuchi; Khadeejah A. Ibrahim; Howard Isaacson; Jon M. Jenkins; Andrej Prsa; Martin Still; R. A. Street; Bill Wohler; David G. Koch; William J. Borucki
Kepler observations of the star HD 187091 (KIC 8112039, hereafter KOI-54) revealed a remarkable light curve exhibiting sharp periodic brightening events every 41.8 days with a superimposed set of oscillations forming a beating pattern in phase with the brightenings. Spectroscopic observations revealed that this is a binary star with a highly eccentric orbit, e = 0.83. We are able to match the Kepler light curve and radial velocities with a nearly face-on (i = 55) binary star model in which the brightening events are caused by tidal distortion and irradiation of nearly identical A stars during their close periastron passage. The two dominant oscillations in the light curve, responsible for the beating pattern, have frequencies that are the 91st and 90th harmonic of the orbital frequency. The power spectrum of the light curve, after removing the binary star brightening component, reveals a large number of pulsations, 30 of which have a signal-to-noise ratio 7. Nearly all of these pulsations have frequencies that are either integer multiples of the orbital frequency or are tidally split multiples of the orbital frequency. This pattern of frequencies unambiguously establishes the pulsations as resonances between the dynamic tides at periastron and the free oscillation modes of one or both of the stars. KOI-54 is only the fourth star to show such a phenomenon and is by far the richest in terms of excited modes.
Monthly Notices of the Royal Astronomical Society | 2010
R. Szabó; Z. Kolláth; László Molnár; Katrien Kolenberg; D. W. Kurtz; Steve Bryson; J. M. Benkő; J. Christensen-Dalsgaard; Hans Kjeldsen; William J. Borucki; David G. Koch; Joseph D. Twicken; M. Chadid; M. Di Criscienzo; Y-B. Jeon; P. Moskalik; James M. Nemec; J. Nuspl
The first detection of the period doubling phenomenon is reported in the Kepler RR Lyrae stars RR Lyr, V808 Cyg and V355 Lyr. Interestingly, all these pulsating stars show Blazhko modulation. The period doubling manifests itself as alternating maxima and minima of the pulsational cycles in the light curve, as well as through the appearance of half-integer frequencies located halfway between the main pulsation period and its harmonics in the frequency spectrum. The effect was found to be stronger during certain phases of the modulation cycle. We were able to reproduce the period-doubling bifurcation in our non-linear RR Lyrae models computed by the Florida-Budapest hydrocode. This enabled us to trace the origin of this instability in RR Lyrae stars to a resonance, namely a 9:2 resonance between the fundamental mode and a high-order (ninth) radial overtone showing strange-mode characteristics. We discuss the connection of this new type of variation to the mysterious Blazhko effect and argue that it may give us fresh insights into solving this century-old enigma.
Monthly Notices of the Royal Astronomical Society | 2010
Roy Ostensen; R. Silvotti; S. Charpinet; R. Oreiro; G. Handler; Elizabeth M. Green; S. Bloemen; Ulrich Heber; B. T. Gänsicke; T. R. Marsh; D. W. Kurtz; J. H. Telting; M. D. Reed; S. D. Kawaler; Conny Aerts; C. Rodríguez-López; M. Vučković; T. A. Ottosen; T. Liimets; A. C. Quint; Valérie Van Grootel; Suzanna K. Randall; R. L. Gilliland; Hans Kjeldsen; J. Christensen-Dalsgaard; William J. Borucki; David G. Koch; Elisa V. Quintana
We present results from the first two quarters of a survey to search for pulsations in compact stellar objects with the Kepler spacecraft. The survey sample and the various methods applied in its compilation are described, and spectroscopic observations are presented to separate the objects into accurate classes. From the Kepler photometry we clearly identify nine compact pulsators and a number of interesting binary stars. Of the pulsators, one shows the strong, rapid pulsations typical of a V361 Hya-type sdB variable (sdBV); seven show long-period pulsation characteristics of V1093 Her-type sdBVs; and one shows low-amplitude pulsations with both short and long periods. We derive effective temperatures and surface gravities for all the subdwarf B stars in the sample and demonstrate that below the boundary region where hybrid sdB pulsators are found, all our targets are pulsating. For the stars hotter than this boundary temperature a low fraction of strong pulsators (<10 per cent) is confirmed. Interestingly, the short-period pulsator also shows a low-amplitude mode in the long-period region, and several of the V1093 Her pulsators show low-amplitude modes in the short-period region, indicating that hybrid behaviour may be common in these stars, also outside the boundary temperature region where hybrid pulsators have hitherto been found.
The Astrophysical Journal | 2000
C. Alcock; Robyn A. Allsman; David Randall Alves; Tim Axelrod; Andrew Cameron Becker; D. P. Bennett; Christine M. Clement; Kem Holland Cook; Andrew J. Drake; Kenneth C. Freeman; Marla Geha; Kim Griest; G Kovacs; D. W. Kurtz; M J Lehner; S. L. Marshall; D. Minniti; C A Nelson; Bruce A. Peterson; P Popowski; Mark Robin Pratt; Peter J. Quinn; A. W. Rodgers; J F Rowe; Christopher W. Stubbs; W. Sutherland; Austin Tomaney; T. Vandehei; Douglas L. Welch
More than 1300 variables classified provisionally as first-overtone RR Lyrae pulsators in the MACHO variable-star database of the Large Magellanic Cloud (LMC) have been subjected to standard frequency analysis. Based on the remnant power in the prewhitened spectra, we found 70% of the total population to be monoperiodic. The remaining 30% (411 stars) are classified as one of nine types according to their frequency spectra. Several types of RR Lyrae pulsational behavior are clearly identified here for the first time. Together with the earlier discovered double-mode (fundamental and first-overtone) variables, this study increased the number of known double-mode stars in the LMC to 181. During the total 6.5 yr time span of the data, 10% of the stars showed strong period changes. The size, and in general also the patterns of the period changes, exclude a simple evolutionary explanation. We also discovered two additional types of multifrequency pulsators with low occurrence rates of 2% for each. In the first type, there remains one closely spaced component after prewhitening by the main pulsation frequency. In the second type, the number of remnant components is two; they are also closely spaced, and are symmetric in their frequency spacing relative to the central component. This latter type of variables are associated with their relatives among the fundamental pulsators, known as Blazhko variables. Their high frequency (≈20%) among the fundamental-mode variables versus the low occurrence rate of their first-overtone counterparts makes it more difficult to explain the Blazhko phenomenon by any theory depending mainly on the role of aspect angle or magnetic field. None of the current theoretical models are able to explain the observed close frequency components without invoking nonradial pulsation components in these stars.
The Astrophysical Journal | 2012
Susan E. Thompson; Mark E. Everett; Fergal Mullally; Steve B. Howell; Martin Still; Jason F. Rowe; Jessie L. Christiansen; D. W. Kurtz; Kelly Hambleton; Joseph D. Twicken; Khadeejah A. Ibrahim; Bruce D. Clarke
We have discovered a class of eccentric binary systems within the Kepler data archive that have dynamic tidal distortions and tidally induced pulsations. Each has a uniquely shaped light curve that is characterized by periodic brightening or variability at timescales of 4-20 days, frequently accompanied by shorter period oscillations. We can explain the dominant features of the entire class with orbitally varying tidal forces that occur in close, eccentric binary systems. The large variety of light curve shapes arises from viewing systems at different angles. This hypothesis is supported by spectroscopic radial velocity measurements for five systems, each showing evidence of being in an eccentric binary system. Prior to the discovery of these 17 new systems, only four stars, where KOI-54 is the best example, were known to have evidence of these dynamic tides and tidally induced oscillations. We perform preliminary fits to the light curves and radial velocity data, present the overall properties of this class, and discuss the work required to accurately model these systems.
Monthly Notices of the Royal Astronomical Society | 2010
S. Bloemen; T. R. Marsh; Roy Ostensen; S. Charpinet; G. Fontaine; P. Degroote; Ulrich Heber; S. D. Kawaler; Conny Aerts; Elizabeth M. Green; J. H. Telting; P. Brassard; B. T. Gänsicke; G. Handler; D. W. Kurtz; R. Silvotti; Valérie Van Grootel; Johan E. Lindberg; T. Pursimo; P. A. Wilson; R. L. Gilliland; Hans Kjeldsen; J. Christensen-Dalsgaard; William J. Borucki; David G. Koch; J. M. Jenkins; Todd C. Klaus
The Kepler Mission has acquired 33.5 d of continuous 1-min photometry of KPD 1946+4340, a short-period binary system that consists of a subdwarf B star (sdB) and a white dwarf. In the light curve, eclipses are clearly seen, with the deepest occurring when the compact white dwarf crosses the disc of the sdB (0.4 per cent) and the more shallow ones (0.1 per cent) when the sdB eclipses the white dwarf. As expected, the sdB is deformed by the gravitational field of the white dwarf, which produces an ellipsoidal modulation of the light curve. Spectacularly, a very strong Doppler beaming (also known as Doppler boosting) effect is also clearly evident at the 0.1 per cent level. This originates from the sdB’s orbital velocity, which we measure to be 164.0 ± 1. 9k m s −1 from supporting spectroscopy. We present light-curve models that account for all these effects, as well as gravitational lensing, which decreases the apparent radius of the white dwarf by about 6 per cent, when it eclipses the sdB. We derive system parameters and uncertainties from the light curve using Markov chain Monte Carlo simulations. Adopting a theoretical white dwarf mass–radius relation, the mass of the subdwarf is found ,
The Astronomy and Astrophysics Review | 2007
M. S. Cunha; Conny Aerts; Jørgen Christensen-Dalsgaard; A. Baglin; Lionel Bigot; Timothy M. Brown; C. Catala; O. L. Creevey; A. Domiciano de Souza; P. Eggenberger; Paulo Garcia; F. Grundahl; Pierre Kervella; D. W. Kurtz; P. Mathias; A. Miglio; M. J. P. F. G. Monteiro; G. Perrin; Frank Peter Pijpers; Dimitri Pourbaix; A. Quirrenbach; Karine Rousselet-Perraut; Teresa C. Teixeira; F. Thévenin; M. J. Thompson
Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.
The Astrophysical Journal | 1998
S. J. Kleinman; R. E. Nather; D. E. Winget; J. C. Clemens; P. A. Bradley; A. Kanaan; J. L. Provencal; C. F. Claver; T. K. Watson; K. Yanagida; A. Nitta; J. S. Dixson; Matt A. Wood; A. D. Grauer; B. P. Hine; G. Fontaine; James Liebert; D. J. Sullivan; D. T. Wickramasinghe; N. Achilleos; T. M. K. Marar; S. Seetha; B. N. Ashoka; E. G. Meištas; Elia M. Leibowitz; P. Moskalik; Jurek Krzesinski; J.-E. Solheim; A. Bruvold; D. O'Donoghue
The white dwarfs are promising laboratories for the study of cosmochronology and stellar evolution. Through observations of the pulsating white dwarfs, we can measure their internal structures and compositions, critical to understanding post main sequence evolution, along with their cooling rates, allowing us to calibrate their ages directly. The most important set of white dwarf variables to measure are the oldest of the pulsators, the cool DAVs, which have not previously been explored through asteroseismology due to their complexity and instability. Through a time-series photometry data set spanning ten years, we explore the pulsation spectrum of the cool DAV, G29-38 and find an underlying structure of 19 (not including multiplet components) normal-mode, probably l=1 pulsations amidst an abundance of time variability and linear combination modes. Modelling results are incomplete, but we suggest possible starting directions and discuss probable values for the stellar mass and hydrogen layer size. For the first time, we have made sense out of the complicated power spectra of a large-amplitude DA pulsator. We have shown its seemingly erratic set of observed frequencies can be understood in terms of a recurring set of normal-mode pulsations and their linear combinations. With this result, we have opened the interior secrets of the DAVs to future asteroseismological modelling, thereby joining the rest of the known white dwarf pulsators.