Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. W. Stracener is active.

Publication


Featured researches published by D. W. Stracener.


Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms | 2003

Status of radioactive ion beams at the HRIBF

D. W. Stracener

Abstract Radioactive Ion Beams (RIBs) at the Holifield Radioactive Ion Beam Facility (HRIBF) are produced using the isotope separation on-line technique and are subsequently accelerated up to a few MeV per nucleon for use in nuclear physics experiments. The first RIB experiments at the HRIBF were completed at the end of 1998 using 17F beams. Since then other proton-rich ion beams have been developed and a large number of neutron-rich ion beams are now available. The neutron-rich radioactive nuclei are produced via proton-induced fission of uranium in a low-density matrix of uranium carbide. Recently developed RIBs include 25Al from a silicon carbide target and isobarically pure beams of neutron-rich Ge, Sn, Br and I isotopes from a uranium carbide target.


Physics of Plasmas | 2008

Studies of laser wakefield structures and electron acceleration in underdense plasmas

Anatoly Maksimchuk; Steven A. Reed; Stepan Bulanov; V. Chvykov; G. Kalintchenko; T. Matsuoka; Christopher McGuffey; G. Mourou; Natalia M. Naumova; John A. Nees; P. Rousseau; V. Yanovsky; Karl Krushelnick; Nicholas H. Matlis; Serguei Y. Kalmykov; Gennady Shvets; M. C. Downer; C. R. Vane; James R. Beene; D. W. Stracener; D. R. Schultz

Experiments on electron acceleration and optical diagnostics of laser wakes were performed on the HERCULES facility in a wide range of laser and plasma parameters. Using frequency domain holography we demonstrated single shot visualization of individual plasma waves, produced by 40TW, 30fs laser pulses focused to the intensity of 1019W∕cm2 onto a supersonic He gas jet with plasma densities ne<1019cm−3. These holographic “snapshots” capture the variation in shape of the plasma wave with distance behind the driver, and resolve wave front curvature seen previously only in simulations. High-energy quasimonoenergetic electron beams were generated using plasma density in the range 1.5×1019≤ne≤3.5×1019cm−3. These experiments demonstrated that the energy, charge, divergence, and pointing stability of the beam can be controlled by changing ne, and that higher electron energies and more stable beams are produced for lower densities. An optimized quasimonoenergetic beam of over 300MeV and 10mrad angular divergence i...


Physical Review Letters | 2012

Halo Nucleus Be11: A Spectroscopic Study via Neutron Transfer

K.T. Schmitt; K. L. Jones; A. Bey; S. H. Ahn; D. W. Bardayan; J.C. Blackmon; S. M. Brown; K. Y. Chae; K. A. Chipps; J. A. Cizewski; K. I. Hahn; J. J. Kolata; R. L. Kozub; J. F. Liang; Catalin Matei; M. Matos; D. Matyas; Brian H Moazen; Caroline D. Nesaraja; F. M. Nunes; P.D. O'Malley; Steven D Pain; W. A. Peters; S. T. Pittman; A. Roberts; D. Shapira; J. F. Shriner; M. S. Smith; I. Spassova; D. W. Stracener

The best examples of halo nuclei, exotic systems with a diffuse nuclear cloud surrounding a tightly bound core, are found in the light, neutron-rich region, where the halo neutrons experience only weak binding and a weak, or no, potential barrier. Modern direct-reaction measurement techniques provide powerful probes of the structure of exotic nuclei. Despite more than four decades of these studies on the benchmark one-neutron halo nucleus 11Be, the spectroscopic factors for the two bound states remain poorly constrained. In the present work, the 10Be d;p reaction has been used in inverse kinematics at four beam energies to study the structure of 11Be. The spectroscopic factors extracted using the adiabatic model were found to be consistent across the four measurements and were largely insensitive to the optical potential used. The extracted spectroscopic factor for a neutron in an n j 2s1=2 state coupled to the ground state of 10Be is 0.71(5). For the first excited state at 0.32 MeV, a spectroscopic factor of 0.62(4) is found for the halo neutron in a 1p1=2 state.


Journal of Physics B | 2007

Three-step resonant photoionization spectroscopy of Ni and Ge : ionization potential and odd-parity Rydberg levels

T. Kessler; K. Brück; C. Baktash; J.R. Beene; Ch. Geppert; C. C. Havener; H.F. Krause; Yuan Liu; D. R. Schultz; D. W. Stracener; C. R. Vane; K. Wendt

In preparation of a laser ion source, we have investigated multi-step laser ionization via Rydberg and autoionizing states for atomic Ni and Ge using a mass separator with an ion beam energy of 20 keV. For both elements resonant three-step excitation schemes suitable for modern Ti:sapphire laser systems were developed. Rydberg series in the range of principal quantum numbers 20 n 80 were localized, assigned and quantum numbers were allocated to the individual resonances. Ionization potentials (IP) were extracted from fits of the individual series and quantum defects of individual levels were analysed for confirmation of series assignment. For Ni the ionization potential could be extracted with significantly increased precision compared to literature with a value of EIP (Ni) = 61 619.77(14) cm −1 . Also, at least one notable autoionizing state above the first IP was discovered for both elements, and the different ionization schemes via Rydberg or autoionizing states were compared with respect to line shape, ionization efficiency and selectivity.


Physical Review C | 2007

Fusion of radioactive Sn-132 with Ni-64

J. F. Liang; D. Shapira; J.R. Beene; C. J. Gross; R. L. Varner; A. Galindo-Uribarri; J. Gomez del Campo; Paul Hausladen; P. E. Mueller; D. W. Stracener; H. Amro; J. J. Kolata; J. D. Bierman; A. L. Caraley; K. L. Jones; Y. Larochelle; W. Loveland; D. Peterson

Evaporation residue and fission cross sections of radioactive 132Sn on 64Ni were measured near the Coulomb barrier. A large subbarrier fusion enhancement was observed. Coupled-channel calculations, including inelastic excitation of the projectile and target, and neutron transfer are in good agreement with the measured fusion excitation function. When the change in nuclear size and shift in barrier height are accounted for, there is no extra fusion enhancement in 132Sn+64Ni with respect to stable Sn+64Ni. A systematic comparison of evaporation residue cross sections for the fusion of even 112-124Sn and 132Sn with 64Ni is presented.


Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms | 2000

Study of resonant reactions with radioactive ion beams

A. Galindo-Uribarri; J. Gomez del Campo; J.R. Beene; C. J. Gross; J. F. Liang; S.D. Paul; D. Shapira; D. W. Stracener; R. L. Varner; E. Chávez; A. Huerta; M.E. Ortiz; E. Padilla; S. Pascual

Abstract A fast and efficient method to study (p,p) and (p,α) resonances with radioactive beams in inverse kinematics is described. It is based on the use of thick targets and large area double-sided silicon strip detectors (DSSDs) to detect the recoiling light-charged particles and to determine precisely their scattering angle. The first nuclear physics experiments with the technique have been performed recently at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge with stable beams of 17 O and radioactive beams of 17 F . The high-quality resonance measurements obtained demonstrate the capabilities of the technique. Pure 17 F beams from HRIBF were produced by fully stripping the ions and separating the interfering and more abundant 17 O ions by the beam transport system. The removal of interfering isobars is one of the various common challenges to both accelerator mass spectrometry (AMS) and radioactive ion beam (RIB) production. Experiments done with RIBs will benefit from the use of the most efficient techniques for production, isobar separation, transport and detection.


Applied Radiation and Isotopes | 2016

Large scale accelerator production of 225Ac: Effective cross sections for 78–192 MeV protons incident on 232Th targets

Justin R Griswold; Dmitri G. Medvedev; Jonathan W. Engle; Roy Copping; Jonathan Fitzsimmons; Valery Radchenko; J. C. Cooley; Michael E. Fassbender; David Denton; Karen Murphy; Allison Owens; Eva R. Birnbaum; Kevin D. John; F.M. Nortier; D. W. Stracener; L. Heilbronn; Leonard F. Mausner; Saed Mirzadeh

Actinium-225 and 213Bi have been used successfully in targeted alpha therapy (TAT) in preclinical and clinical research. This paper is a continuation of research activities aiming to expand the availability of 225Ac. The high-energy proton spallation reaction on natural thorium metal targets has been utilized to produce millicurie quantities of 225Ac. The results of sixteen irradiation experiments of thorium metal at beam energies between 78 and 192MeV are summarized in this work. Irradiations have been conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing was carried out at Oak Ridge National Laboratory (ORNL). Excitation functions for actinium and thorium isotopes, as well as for some of the fission products, are presented. The cross sections for production of 225Ac range from 3.6 to 16.7mb in the incident proton energy range of 78-192MeV. Based on these data, production of curie quantities of 225Ac is possible by irradiating a 5.0gcm-2 232Th target for 10 days in either BNL or LANL proton irradiation facilities.


Physical Review C | 2002

Elastic scattering and breakup of 17 F at 10 MeV/nucleon

J. F. Liang; J.R. Beene; H. Esbensen; A. Galindo-Uribarri; J. Gomez del Campo; C. J. Gross; M. L. Halbert; P. E. Mueller; D. Shapira; D. W. Stracener; I. J. Thompson; R. L. Varner

Angular distributions of fluorine and oxygen produced from 170 MeV 17^F incident on 208^Pb were measured. The elastic scattering data are in good agreement with optical model calculations using a double-folding potential and parameters similar to those obtained from 16^O+208^Pb. A large yield of oxygen was observed near \theta_lab=36 deg. It is reproduced fairly well by a calculation of the (17^F,16^O) breakup, which is dominated by one-proton stripping reactions. The discrepancy between our previous coincidence measurement and theoretical predictions was resolved by including core absorption in the present calculation.


Physical Review Letters | 2016

Evidence for Gamow-Teller Decay of

M. Madurga; S. V. Paulauskas; R. Grzywacz; David Miller; D. W. Bardayan; J. C. Batchelder; N. T. Brewer; J. A. Cizewski; A. Fijałkowska; C. J. Gross; M. E. Howard; S. Ilyushkin; B. Manning; M. Matos; A. J. Mendez; K. Miernik; S. Padgett; W. A. Peters; B. C. Rasco; A. Ratkiewicz; K. Rykaczewski; D. W. Stracener; E. H. Wang; M. Wolińska-Cichocka; E. F. Zganjar

The β-delayed neutron emission of ^{83,84}Ga isotopes was studied using the neutron time-of-flight technique. The measured neutron energy spectra showed emission from states at excitation energies high above the neutron separation energy and previously not observed in the β decay of midmass nuclei. The large decay strength deduced from the observed intense neutron emission is a signature of Gamow-Teller transformation. This observation was interpreted as evidence for allowed β decay to ^{78}Ni core-excited states in ^{83,84}Ge favored by shell effects. We developed shell model calculations in the proton fpg_{9/2} and neutron extended fpg_{9/2}+d_{5/2} valence space using realistic interactions that were used to understand measured β-decay lifetimes. We conclude that enhanced, concentrated β-decay strength for neutron-unbound states may be common for very neutron-rich nuclei. This leads to intense β-delayed high-energy neutron and strong multineutron emission probabilities that in turn affect astrophysical nucleosynthesis models.


Applied Physics Letters | 2006

^{78}

S. Reed; V. Chvykov; G. Kalintchenko; T. Matsuoka; P. Rousseau; V. Yanovsky; C. R. Vane; James R. Beene; D. W. Stracener; D. R. Schultz; Anatoly Maksimchuk

Recent advancements in laser wakefield accelerators have resulted in the generation of low divergence, hundred MeV, quasimonoenergetic electron beams. The bremsstrahlung produced by these highly energetic electrons in heavy converters includes a large number of MeV γ rays that have been utilized to induce photofission in natural uranium. Analysis of the measured delayed γ emission demonstrates production of greater than 3×105 fission events per joule of laser energy, which is more than an order of magnitude greater than that previously achieved. Monte Carlo simulations model the generated bremsstrahlung spectrum and compare photofission yields as a function of target depth and incident electron energy.

Collaboration


Dive into the D. W. Stracener's collaboration.

Top Co-Authors

Avatar

C. J. Gross

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. E. Mueller

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Galindo-Uribarri

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. Shapira

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

K. Rykaczewski

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. F. Liang

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J.R. Beene

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. L. Varner

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. C. Batchelder

Oak Ridge Associated Universities

View shared research outputs
Top Co-Authors

Avatar

C. Baktash

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge