Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Warner is active.

Publication


Featured researches published by D. Warner.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2008

The Surface Detector System of the Pierre Auger Observatory

I. Allekotte; A.F. Barbosa; P. Bauleo; C. Bonifazi; B. Civit; C. O. Escobar; B. García; G. P. Guedes; M. Gómez Berisso; J. L. Harton; M. Healy; M. Kaducak; P. Mantsch; P.O. Mazur; C. Newman-Holmes; Iuri Muniz Pepe; I. Rodriguez-Cabo; H. Salazar; N. Smetniansky-De Grande; D. Warner

The Pierre Auger Observatory is designed to study cosmic rays with energies greater than 10 19 eV. Two sites are envisaged for the observatory, one in each hemisphere,


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1997

TEST OF A LARGE SCALE PROTOTYPE OF THE DIRC, A CHERENKOV IMAGING DETECTOR BASED ON TOTAL INTERNAL REFLECTION FOR BABAR AT PEP-II

R. Aleksan; L. Amerman; D. Aston; M. Benkebil; P. Besson; G. R. Bonneaud; P. Bourgeois; D. N. Brown; J. Chauveau; A. Ciocio; R. Cizeron; A. de Lesquen; L. Del Buono; S. Emery; A. Gaidot; L. Gosset; Daniel E. Hale; G. Hamel de Monchenault; O. Hamon; C. Hearty; A Jouenne; J. Kadyk; H. Kawahara; H. Krueger; G. W. London; M. Long; A. Lu; A. M. Lutz; G. Lynch; D. McShurley

Abstract The principles of the DiRC ring imaging Cherenkov technique are briefly explained and its choice for the B a B ar detector particle identification system is motivated. A large scale prototype of the DIRC for the B a B ar experiment is then described. Details of the design of this prototype and its test in a hadronic particle beam at the CERN-PS are presented, and results from various prototype and test configurations are given. For example, after correcting for geometrical acceptance and estimated collection effects, the number of photoelectrons was measured to be 146 ± 1.8 ± 9 cm −1 , for a track angle of 20° at zero photon transmission distance. The effective attenuation loss was measured to be 4.1 ± 0.7% per meter of bar length, and the observed single photon resolution was 10.0 ± 0.2 mrad. This performance is consistent with what was expected from earlier tests and Monte Carlo simulations, and will be fully adequate for the physics demands of the B a B ar experiment.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2013

The T2K Side Muon Range Detector (SMRD)

S. Aoki; G. Barr; M. Batkiewicz; J. Blocki; J. Brinson; W. Coleman; A. Dąbrowska; I. Danko; M. Dziewiecki; B. Ellison; L. Golyshkin; R. Gould; T. Hara; J. Haremza; B. Hartfiel; J. Holeczek; A. Izmaylov; M. Khabibullin; A. Khotjantsev; D. Kielczewska; A. Kilinski; J. Kisiel; Y. Kudenko; N. Kulkarni; R. Kurjata; T. Kutter; J. Łagoda; J. Liu; J. Marzec; W. Metcalf

The T2K experiment is a long baseline neutrino oscillation experiment aiming to observe the appearance ofe in a �µ beam. The �µ beam is produced at the Japan Proton Accelerator Research Complex (J-PARC), observed with the 295 km distant Super- Kamiokande Detector and monitored by a suite of near detectors at 280m from the proton target. The near detectors include a magnetized off-axis detector (ND280) which measures the un-oscillated neutrino flux and neutrino cross sections. The present paper describes the outermost component of ND280 which is a side muon range detector (SMRD) composed of scintillation counters with embedded wavelength shifting fibers and Multi-Pixel Photon Counter read-out. The components, performance and response of the SMRD are presented.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2012

The T2K ND280 Off-Axis Pi-Zero Detector

S. Assylbekov; G. Barr; B. E. Berger; H. G. Berns; D. Beznosko; A. Bodek; R. Bradford; N. J. Buchanan; H. S. Budd; Y. Caffari; K. Connolly; I. Danko; R. Das; S. Davis; M. Day; S. A. Dytman; M. Dziomba; R. Flight; D. A. Forbush; K. Gilje; D. Hansen; J. Hignight; J. Imber; R. A. Johnson; C. K. Jung; V. Kravtsov; P. T. Le; G. D. Lopez; C.J. Malafis; S. Manly

Abstract The pi–zero detector (POD) is one of the subdetectors that makes up the off-axis near detector for the Tokai-to-Kamioka (T2K) long baseline neutrino experiment. The primary goal for the POD is to measure the relevant cross-sections for neutrino interactions that generate π 0 s, especially the cross-section for neutral current π 0 interactions, which are one of the dominant sources of background to the ν μ → ν e appearance signal in T2K. The POD is composed of layers of plastic scintillator alternating with water bags and brass sheets or lead sheets and is one of the first detectors to use Multi-Pixel Photon Counters (MPPCs) on a large scale.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1996

A modular straw drift tube tracking system for the Solenoidal Detector Collaboration experiment Part I. Design

Y. Arai; J.G. Arnold; J.W. Barkell; B. Bevensee; B. Broomer; J. Chapman; M. Chiba; T. Collins; M. Corden; D. Craig; D.M. Davis; N. Dressnandt; A. Dunn; William L. Dunn; T. Ekenberg; M.S. Emery; T. Emura; E. Erdos; W. T. Ford; T. A. Gabriel; A. T. Goshaw; S. V. Greene; M. van Haaren; D.T. Hackworth; R. Hamatsu; G. Hanson; T. Hirose; M. Ikeno; Q.P. Jia; D. R. Johnson

Abstract We have developed the baseline design for a straw drift tube tracking system for the Solenoidal Detector Collaboration (SDC) detector. The system was designed to operate in the high-rate environment of a high luminosity hadron collider. We present an overview of the tracking system and the requirements it was expected to fulfill. We describe the construction and properties of the straw drift tubes. We discuss the design of the carbon-fiber foam-laminate shell, which supported the wire tension and held the straws in alignment. We also present descriptions of the designs of the front-end and digitization electronics as well as the electronics associated with the level 1 track trigger.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2010

Scintillator counters with WLS fiber/MPPC readout for the side muon range detector (SMRD)of the T2K experiment

A. Izmaylov; S. Aoki; J. Blocki; J. Brinson; A. Dabrowska; I. Danko; M. Dziewiecki; B. Ellison; L. Golyshkin; R. Gould; T. Hara; B. Hartfiel; J. Holeczek; M. Khabibullin; A. Khotjantsev; D. Kielczewska; J. Kisiel; T. Kozłowski; Y. Kudenko; R. Kurjata; T. Kutter; J. Lagoda; J. Liu; J. Marzec; W. Metcalf; P. Mijakowski; O. Mineev; Yu. Musienko; D. Naples; M. Nauman

The T2K neutrino experiment at J-PARC uses a set of near detectors to measure the properties of an unoscillated neutrino beam and neutrino interaction cross-sections. One of the sub-detectors of the near-detector complex, the side muon range detector (SMRD), is described in the paper. The detector is designed to help measure the neutrino energy spectrum, to identify background and to calibrate the other detectors. The active elements of the SMRD consist of 0.7 cm thick extruded scintillator slabs inserted into air gaps of the UA1 magnet yokes. The readout of each scintillator slab is provided through a single WLS fiber embedded into a serpentine-shaped groove. Two Hamamatsu multi–pixel avalanche photodiodes (MPPCs) are coupled to both ends of the WLS fiber. This design allows us to achieve a high MIP detection efficiency of greater than 99%. A light yield of 25–50 p.e./MIP, a time resolution of about 1 ns and a spatial resolution along the slab better than 10 cm were obtained for the SMRD counters.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1998

The BaBaR drift chamber project

A. Boucham; I. De Bonis; A. Jeremie; Y. Karyotakis; R. Lafaye; C. Goodenough; C. Hearty; J. Heise; M. Kelsey; J. A. McKenna; D.E. Dorfan; J. Fernandez; H. F.-W. Sadrozinski; B. A. Schumm; N. Spencer; J. L. Harton; R. Malchow; M.B. Smy; D. Warner; B. Broomer; E. Erdos; W. T. Ford; A. Gritsan; D. R. Johnson; H. Krieg; J. Roy; Harold S. Park; P. Rankin; J. G. Smith; A. Gaddi

The BaBar Drift Chamber is now under construction. We review its design, the progress in the construction of the components, the plan for assembly and stringing and we present test results obtained with a prototype exposed at SLAC to cosmic rays. We also report on projected dE/dx performance from beam tests done with a chamber with a different cell design.


IEEE Transactions on Nuclear Science | 1998

BaBar DIRC electronics front-end chain

P. Bailly; C. Beigbeder; R. Bernier; D. Breton; G. R. Bonneaud; T. Caceres; R. Chase; J. Chauveau; L. Del Buono; F. Dohou; A. Ducorps; F. Gastaldi; J.F. Genat; A. Hrisoho; P. Imbert; H. Lebbolo; P. Matricon; G. Oxoby; C. Renard; L. Roos; S. Sen; C. Thiebaux; K. Trong; V. Tocut; G. Vasileiadis; J. Va'vra; M. Verderi; D. Warner; R. J. Wilson; G. Wormser

The Front-End electronics of the Detector of Internally Reflected Cerenkov light (DIRC) for the BaBar experiment is presented. Its aim is to measure to better than 1 ns the arrival time of Cerenkov photoelectrons, detected in a 11000 phototubes array and their amplitude spectra. It mainly comprises 64-channel DIRC Front-End Boards (DFB) equipped with eight full-custom analog chips performing zero-cross discrimination with 2 mV threshold and pulse shaping, four full-custom digital TDC chips for timing measurements with and a readout logic selecting hits in the trigger window, and DIRC Crate Controller cards (DCC) serializing the data collected from up to 16 DFBs onto a 1.2 Gb/s optical link. Extensive test results of the pre-production chips are presented, as well as system tests.


nuclear science symposium and medical imaging conference | 1999

First year operational experience with the Cherenkov detector (DIRC) of BaBar

I. Adam; R. Aleksan; D. Aston; P. Bailly; C. Beigbeder; M. Benayoun; M. Benkebil; G. R. Bonneaud; D. Breton; H. Briand; D. N. Brown; P. Bourgeois; J. Chauveau; R. Cizeron; J. Cohen-Tanugi; M. R. Convery; S. Dardin; P. David; G. De Domenico; C de la Vaissiere; A. de Lesquen; S. Emery; G. Fouque; A. Gaidot; F. Gastaldi; J.F. Genat; T.L. Geld; L. Gosset; Daniel E. Hale; G. Hamel de Monchenault

The DIRC (acronym for Detection of Internally Reflected Cherenkov (light)) is a new type of Cherenkov ring imaging detector based on total internal reflection that is used for the first time in the BaBar detector at the PEP-II ring of SLAC. The Cherenkov radiators are long rectangular bars made of synthetic fused silica, the photon detector is a water tank equipped with an array of 10,752 conventional photomultipliers. The first year operational experience in the BaBar detector is presented using cosmic data and collision data in the energy region of the /spl Upsi/(4S) resonance.


nuclear science symposium and medical imaging conference | 1998

The DIRC front-end electronics chain for BaBar

P. Bailly; C. Beigbeder; R. Bernier; D. Breton; G. R. Bonneaud; T. Caceres; R. Chase; J. Chauveau; L. Del Buono; F. Dohou; A. Ducorps; F. Gastaldi; J.F. Genat; A. Hrisoho; P. Imbert; H. Lebbolo; P. Matricon; G. Oxoby; C. Renard; L. Roos; S. Sen; C. Thiebaux; K. Truong; V. Tocut; G. Vasileiadis; J. Va'vra; M. Verderi; D. Warner; R. J. Wilson; G. Wormser

Recent results from the Front-End electronics of the Detector of Internally Reflected Cerenkov light (DIRC) for the BaBar experiment at SLAC (Stanford, USA) are presented. It measures to better than 1 ns the arrival time of Cerenkov photoelectrons detected in a 11000 phototubes array and their amplitude spectra. It mainly comprises 64-channel DIRC Front-End Boards (DFB) equipped with eight full-custom analog chips performing zero-cross discrimination with 2 mV threshold and pulse shaping, four full-custom digital time to digital chips (TDC) for timing measurements with 500 ps binning and a readout logic selecting hits in the trigger window, and DIRC Crate Controller cards (DCC) serializing the data collected front up to 16 DFBs onto a 1.2 Gb/s optical link. Extensive test results of the pre-production chips are presented, as well as system tests.

Collaboration


Dive into the D. Warner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Kutter

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

C. Beigbeder

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar

D. Breton

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Ellison

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Danko

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

J. Brinson

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge