D. Y. Rogozin
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Y. Rogozin.
Aquatic Ecology | 2010
D. Y. Rogozin; S. N. Genova; R. D. Gulati; A. G. Degermendzhy
In a brackish, temperate, 24-m-deep Lake Shira, the profiles of salinity, temperature, oxygen and sulfide concentrations were measured on a seasonal basis from 2002 to 2009. The lake was shown to be meromictic with autumnal overturn restricted to mixolimnion. The depth of mixolimnion and position of oxic–anoxic interface varied annually. The spring mixing processes contribute to the formation of mixolimnion in autumn. The exceptionally windy spring of 2007 caused the deepening of mixolimnion in the winter of 2008. The winter position of oxic–anoxic interface was affected by the position of lower boundary of mixolimnion in all winters. The salinity in the winter mixolimnion increased compared with the autumn because of freezing out of salts from the upper water layers meters during ice formation and their dissolution in water below. The profiles of salinity and temperature were simulated by the mathematical 1-D model of temperature and salinity conditions taking into account ice formation. The simulated profiles generally coincided with the measured ones. The coincidence implies that simplified one-dimensional model can be applied to roughly describe salinity and density profiles and mixing behavior of Lake Shira.
Aquatic Ecology | 2009
D. Y. Rogozin; V. V. Zykov; M. Y. Chernetsky; A. G. Degermendzhy; R. D. Gulati
The year-to-year variations of vertical distribution and biomass of anoxic phototrophic bacteria were studied during ice periods 2003–2005 and 2007–2008 in meromictic lakes Shira and Shunet (Southern Siberia, Russian Federation). The bacterial layers in chemocline of both lakes were sampled with a thin-layer hydraulic multi-syringe sampler. In winter, biomass of purple sulphur bacteria varied considerably depending on the amount of light penetrating into the chemocline through the ice and snow cover. In relatively weakly stratified, brackish Shira Lake, the depth of chemocline varied between winters, so that light intensity for purple sulphur bacteria inhabiting this zone differed. In Shira Lake, increased transparency of mixolimnion in winter, high chemocline position and absence of snow resulted in light intensity and biomass of purple sulphur bacteria exceeding the summer values in the chemocline of the lake. We could monitor snow cover at the lake surface using remote sensing and therefore estimate dynamics and amount of light under ice and its availability for phototrophic organisms. In Shunet Lake, the light intensities in the chemocline and biomasses of purple sulphur bacteria were always lower in winter than in summer, but the biomasses of green sulphur bacteria were similar.
Aquatic Ecology | 2010
Svetlana N. Genova; Victor M. Belolipetskii; D. Y. Rogozin; A. G. Degermendzhy; Wolf M. Mooij
In meromictic lakes such as Lake Shira, horizontal inhomogeneity is small in comparison with vertical gradients. To determine the vertical distribution of temperature, salinity, and density of water in a deep zone of a Lake Shira, or other saline lakes, a one-dimensional (in vertical direction) mathematical model is presented. A special feature of this model is that it takes into account the process of ice formation. The model of ice formation is based on the one-phase Stefan problem with the linear temperature distribution in the solid phase. A convective mixed layer is formed under an ice cover due to salt extraction in the ice formation process. To obtain analytical solutions for the vertical distribution of temperature, salinity, and density of water, we use a scheme of vertical structure in the form of several layers. In spring, the ice melts as top and bottom. These processes are taken into account in the model. The calculated profiles of salinity and temperature of Shira Lake are in good agreement with field measurement data for each season. Additionally, we focussed on the redox zone, which is the zone in which the aerobic layers of a water column meet the anaerobic ones. Hyperactivity of plankton communities is observed in this zone in lakes with hydrogen sulphide monimolimnion, and Lake Shira is among them. The location of the redox zone in the lake, which is estimated from field measurements, coincides with a sharp increase in density (the pycnocline) during autumn and winter. During spring and summer, the redox zone is deeper than the pycnocline. The location of pycnocline calculated with the hydro physical model is in good agreement with field measurement data.
Aquatic Ecology | 2003
D. B. Kosolapov; D. Y. Rogozin; Inna A. Gladchenko; A. I. Kopylov; E. E. Zakharova
Patterns of sulfate reduction were studied in water and sediments of Lake Shira, South Siberia, Russia. The lake was characterized by a high level of sulfate (91-116 mM). The concentration of hydrogen sulfide in the anoxic waters of the lake reached 0.6 mM. In summer the sulfate reduction rate in the water column, measured by radiometric technique, varied from 0.25 to 9.81 μmol sulfate l-1 d-1. There were two peaks of sulfate reduction activity: just below the chemocline and near the sediment surface. Sulfate reduction rate in the profundal silts ranged from 4.1 to 90.6 μmol l-1 d-1. The zone of the most active sulfate reduction was restricted to the surface sediment layers. The acceleration of sulfate reduction rate (up to 236 μmol l-1 d-1) and the increase of density of viable sulfate reducers (up to 2 x 105 cells ml-1) were recorded in the littoral sediments adjacent to the mouth of the Son River and sewage discharge. It was apparently caused by the input of allochthonous organic substrates and also by a high environmental temperature. On an areal basis, sulfate reduction rate in the water was approximately 8 times higher than that in the profundal sediments. Sulfate reduction was the most important process of anaerobic oxidation of organic carbon in Lake Shira. In summer in the profundal zone of the lake, sulfate reducers were able to mineralize about 67% of the daily integrated primary production of phototrophic and chemotrophic organisms.
Doklady Earth Sciences | 2017
D. Y. Rogozin; Andrey Darin; Ivan Kalugin; M. S. Melgunov; A. V. Meydus; A. G. Degermendzhi
We estimated the age and sedimentation rate of bottom sediments in Cheko Lake located in southern Evenkia, in the territory of Tunguska Nature Reserve, near the supposed epicenter of the so-called 1908 Tunguska Event. The vertical distributions of 137Cs and 210Pb activity and visually counted varves in the core of lake bottom sediments indicate that Cheko Lake is significantly older than the 1908 Tunguska Event; therefore, the lake basin cannot be a crater or a trace of the explosion as was supposed earlier by some researchers.
International Journal of Systematic and Evolutionary Microbiology | 2018
Sheng-Chung Chen; Hsing-Hua Huang; Mei-Chin Lai; Chieh-Yin Weng; Hsiu-Hui Chiu; Sen-Lin Tang; D. Y. Rogozin; A. G. Degermendzhy
A psychrotolerant, methylotrophic methanogen, strain YSF-03T, was isolated from the saline meromictic Lake Shira in Siberia. Cells of strain YSF-03T were non-motile, irregular cocci and 0.8-1.2 µm in diameter. The methanogenic substrates utilized by strain YSF-03T were methanol and trimethylamine. The temperature range of growth for strain YSF-03T was from 0 to 37 °C. The optimum growth conditions were 30-37 °C, pH 7.0-7.4 and 0.17 M NaCl. The G+C content of the genome of strain YSF-03T was 41.3 mol%. Phylogenetic analysis revealed that strain YSF-03T was most closely related to Methanolobus profundi MobMT (98.15 % similarity in 16S rRNA gene sequence). Genome relatedness between strain YSF-03T and MobMT was computed using the Genome-to-Genome Distance Calculator and average nucleotide identity, which gave values of 23.5 and 79.3 %, respectively. Based on the morphological, phenotypic, phylogenetic and genomic relatedness data presented here, it is evident that strain YSF-03T represents a novel species of the genus Methanolobus, for which the name Methanolobus psychrotolerans sp. nov. is proposed. The type strain is YSF-03T (=BCRC AR10049T=DSM 104044T=NBRC 112514T).
Frontiers in Microbiology | 2018
Yu-Ting Wu; Pei-Wen Chiang; Ching-Hung Tseng; Hsiu-Hui Chiu; Isaam Saeed; Bayanmunkh Baatar; D. Y. Rogozin; Saman K. Halgamuge; Andrei Georgievich Degermendzhi; Sen-Lin Tang
Microorganisms are critical to maintaining stratified biogeochemical characteristics in meromictic lakes; however, their community composition and potential roles in nutrient cycling are not thoroughly described. Both metagenomics and metaviromics were used to determine the composition and capacity of archaea, bacteria, and viruses along the water column in the landlocked meromictic Lake Shunet in Siberia. Deep sequencing of 265 Gb and high-quality assembly revealed a near-complete genome corresponding to Nonlabens sp. sh3vir. in a viral sample and 38 bacterial bins (0.2–5.3 Mb each). The mixolimnion (3.0 m) had the most diverse archaeal, bacterial, and viral communities, followed by the monimolimnion (5.5 m) and chemocline (5.0 m). The bacterial and archaeal communities were dominated by Thiocapsa and Methanococcoides, respectively, whereas the viral community was dominated by Siphoviridae. The archaeal and bacterial assemblages and the associated energy metabolism were significantly related to the various depths, in accordance with the stratification of physicochemical parameters. Reconstructed elemental nutrient cycles of the three layers were interconnected, including co-occurrence of denitrification and nitrogen fixation in each layer and involved unique processes due to specific biogeochemical properties at the respective depths. According to the gene annotation, several pre-dominant yet unknown and uncultured bacteria also play potentially important roles in nutrient cycling. Reciprocal BLAST analysis revealed that the viruses were specific to the host archaea and bacteria in the mixolimnion. This study provides insights into the bacterial, archaeal, and viral assemblages and the corresponding capacity potentials in Lake Shunet, one of the three meromictic lakes in central Asia. Lake Shunet was determined to harbor specific and diverse viral, bacterial, and archaeal communities that intimately interacted, revealing patterns shaped by indigenous physicochemical parameters.
Contemporary Problems of Ecology | 2018
D. Y. Rogozin; V. V. Zykov; Elena A. Ivanova; T. N. Anufrieva; Yuri Barkhatov; E. B. Khromechek; I. Y. Botvich
The seasonal dynamics of the vertical structure of small saline Lake Uchum, located in the steppe arid zone of the south of Siberia (Krasnoyarsk krai), has been studied in detail for the first time. This lake is a meromictic water body. We have revealed a heterogeneous vertical distribution of plankton organisms and a dense population of purple sulfuric bacteria in the redox zone. The taxonomic composition and seasonal dynamics of phyto- and zooplankton are described. Presumably, the meromixis of Lake Uchum is due to the inflow of fresh water to the surface of the saline water body during the rise of its level in the early 20th century, similarly to lakes Shira and Shunet located nearby. The processes of salt displacement into the solution during the formation of ice, as well as the precipitation of salts in the winter, also contribute to the maintenance of permanent stratification. The information on the current state of the lake can be useful for reconstructing the climate by bottom sediments, as well as for creating a model of water quality and investigating the therapeutic properties of lake mud.
Doklady Earth Sciences | 2017
V.M. Belolipetskii; A. G. Degermendzhi; S. N. Genova; D. Y. Rogozin
The in-situ data on the vertical structure and stability of the vertical stratification of saline Lake Shira over the past decade (2007–2015) are analyzed. Simplified mathematical models have shown that strong wind in the autumn of 2014 together with rather thick ice in the winter of 2015 caused a change in the circulation regime of this water reservoir from meromictic (incomplete mixing) to holomictic (compete mixing). Based on the results obtained, a circulation regime for deep saline lakes located in the continental climate zone, in particular, in the arid zones of Southern Siberia (Khakassia, Transbaikal, and Altai) can be predicted under various climate scenarios of the future.
Acta Geologica Sinica-english Edition | 2014
Galina Bolobanschikova; D. Y. Rogozin
Meromictic lakes are interesting objects for study in terms of paleolimnology.The lamination of the bottom sediments well expressed in these lakes.It is related with permanent stratification of the water column.Through this