Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Zvezdov is active.

Publication


Featured researches published by D. Zvezdov.


Review of Scientific Instruments | 2014

Experimental cell for molecular beam deposition and magnetic resonance studies of matrix isolated radicals at temperatures below 1 K

S. Sheludiakov; J. Ahokas; O. Vainio; J. Järvinen; D. Zvezdov; S. Vasiliev; V. V. Khmelenko; S. Mao; D. M. Lee

We present the design and performance of an experimental cell constructed for matrix isolation studies of H and D atoms in solid H2/D2 films, which are created by molecular beam deposition at temperatures below 1 K. The sample cell allows sensitive weighing of the films by a quartz microbalance (QM) and their studies by magnetic resonance techniques in a strong magnetic field of 4.6 T. We are able to regulate the deposition rate in the range from 0.01 to 10 molecular layers/s, and measure the thickness with ≈0.2 monolayer resolution. The upper QM electrode serves as a mirror for a 128 GHz Fabry-Perot resonator connected to an electron spin resonance (ESR) spectrometer. H and D atoms were created by RF discharge in situ in the sample cell, and characterized by ESR and electron-nuclear double resonance. From the magnetic resonance measurements we conclude that the films are smooth and provide homogeneous trapping conditions for embedded atoms. The current sample cell design also makes it possible to calibrate the ESR signal and estimate the average and local concentrations of H and D radicals in the film.


Physical Review Letters | 2015

Bose-Einstein Condensation of Magnons in Atomic Hydrogen Gas

O. Vainio; J. Ahokas; J. Järvinen; L. Lehtonen; S. Novotny; S. Sheludiakov; K. A. Suominen; S. Vasiliev; D. Zvezdov; V. V. Khmelenko; D. M. Lee

We report on experimental observation of Bose-Einstein condensation (BEC)-like behavior of quantized electron spin waves (magnons) in a dense gas of spin-polarized atomic hydrogen. The magnons are trapped and controlled with inhomogeneous magnetic fields and described by a Schrödinger-like wave equation, in analogy to the BEC experiments with neutral atoms. We have observed the appearance of a sharp feature in the ESR spectrum displaced from the normal spin wave spectrum. We believe that this observation corresponds to a sudden growth of the ground-state population of the magnons and emergence of their spontaneous coherence for hydrogen gas densities exceeding a critical value, dependent on the trapping potential. We interpret the results as a BEC of nonequilibrium magnons which were formed by applying the rf power.


Physical Chemistry Chemical Physics | 2016

Tunneling chemical exchange reaction D + HD → D2 + H in solid HD and D2 at temperatures below 1 K.

S. Sheludiakov; J. Ahokas; J. Järvinen; D. Zvezdov; L. Lehtonen; O. Vainio; S. Vasiliev; D. M. Lee; V. V. Khmelenko

We report on a study of the exchange tunneling reaction D + HD → D2 + H in a pure solid HD matrix and in a D2 matrix with a 0.23% HD admixture at temperatures between 130 mK and 1.5 K. We found that the exchange reaction rates, kexHD ∼ 3 × 10-27 cm3 s-1 in the pure HD matrix, and kexD2 = 9(4) × 10-28 cm3 s-1 in the D2 matrix, are nearly independent of temperature within this range. This confirms the quantum tunnelling nature of these reactions, and their ability to proceed at temperatures down to absolute zero. Based on these observations we concluded that exchange tunneling reaction H + H2 → H2 + H should also proceed in a H2 matrix at the lowest temperatures. On the other hand, the recombination of H atoms in solid H2 and D atoms in solid D2 is substantially suppressed at the lowest temperatures as a result of a decreased probability of resonant tunneling of atoms when they approach each other.


Physical Review Letters | 2012

Guiding and trapping of electron spin waves in atomic hydrogen gas.

O. Vainio; J. Ahokas; S. Novotny; S. Sheludyakov; D. Zvezdov; K. A. Suominen; S. Vasiliev

We present a high magnetic field study of electron spin waves in atomic hydrogen gas compressed to high densities of ∼10(18)  cm(-3) at temperatures ranging from 0.26 to 0.6 K. We observed a variety of spin wave modes caused by the identical spin rotation effect with strong dependence on the spatial profile of the polarizing magnetic field. We demonstrate confinement of these modes in regions of strong magnetic field and manipulate their spatial distribution by changing the position of the field maximum.


Physical Review B | 2015

Microscopic control of Si-29 nuclear spins near phosphorus donors in silicon

J. Järvinen; D. Zvezdov; J. Ahokas; S. Sheludyakov; O. Vainio; L. Lehtonen; S. Vasiliev; Yutaka Fujii; S. Mitsudo; Takao Mizusaki; M. Gwak; SangGap Lee; Soonchil Lee; L. S. Vlasenko

We demonstrate an efficient control of


Physical Review Letters | 2014

Dynamic nuclear polarization of high-density atomic hydrogen in solid mixtures of molecular hydrogen isotopes.

S. Sheludiakov; J. Ahokas; J. Järvinen; D. Zvezdov; O. Vainio; L. Lehtonen; S. Vasiliev; S. Mao; V. V. Khmelenko; D. M. Lee

^{29}


Physical Review B | 2014

Efficient dynamic nuclear polarization of phosphorus in silicon in strong magnetic fields and at low temperatures

J. Järvinen; J. Ahokas; S. Sheludyakov; O. Vainio; L. Lehtonen; S. Vasiliev; D. Zvezdov; Yutaka Fujii; S. Mitsudo; T. Mizusaki; M. Gwak; SangGap Lee; Soonchil Lee; L. S. Vlasenko

Si nuclear spin orientation for specific lattice sites near


Journal of Low Temperature Physics | 2016

Electron Spin Resonance Study of Electrons Trapped in Solid Molecular Hydrogen Films

S. Sheludiakov; J. Ahokas; J. Järvinen; O. Vainio; L. Lehtonen; D. Zvezdov; V. V. Khmelenko; D. M. Lee; S. Vasiliev

^{31}


Applied Magnetic Resonance | 2017

Dynamic Polarization and Relaxation of 75As Nuclei in Silicon at High Magnetic Field and Low Temperature

J. Järvinen; J. Ahokas; S. Sheludiakov; O. Vainio; D. Zvezdov; L. Lehtonen; L. S. Vlasenko; S. Vasiliev

P donors in silicon crystals at temperatures below 1 K and in high magnetic field of 4.6 T. Excitation of the forbidden electron-nuclear transitions leads to a pattern of narrow holes and peaks in the ESR lines of


日本物理学会講演概要集 | 2015

23pBJ-6 超低温・強磁場下における希薄ドープ半導体Si:Pの動的核偏極

裕 藤井; 誠太郎 光藤; 隆雄 水崎; 和也 森本; M. Gwak; SangGap Lee; Soonchil Lee; S. Vasiliev; J. Järvinen; D. Zvezdov; J. Ahokas; S. Sheludyakov; O. Vainio; L. Lehtonen; L. S. Vlasenko

^{31}

Collaboration


Dive into the D. Zvezdov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. S. Vlasenko

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge