Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Da-Qiang Li is active.

Publication


Featured researches published by Da-Qiang Li.


PLOS ONE | 2015

Identification of a comprehensive spectrum of genetic factors for hereditary breast cancer in a Chinese population by next-generation sequencing

Xiaochen Yang; Wu J; Jingsong Lu; Guangyu Liu; Genhong Di; Canming Chen; Yifeng Hou; Menghong Sun; Wentao Yang; Xiaojing Xu; Ying Zhao; Xin Hu; Da-Qiang Li; Zhigang Cao; Xiaoyan Zhou; Xiaoyan Huang; Zhebin Liu; Huan Chen; Yanzi Gu; Yayun Chi; Xia Yan; Qixia Han; Zhenzhou Shen; Zhimin Shao; Zhen Hu

The genetic etiology of hereditary breast cancer has not been fully elucidated. Although germline mutations of high-penetrance genes such as BRCA1/2 are implicated in development of hereditary breast cancers, at least half of all breast cancer families are not linked to these genes. To identify a comprehensive spectrum of genetic factors for hereditary breast cancer in a Chinese population, we performed an analysis of germline mutations in 2,165 coding exons of 152 genes associated with hereditary cancer using next-generation sequencing (NGS) in 99 breast cancer patients from families of cancer patients regardless of cancer types. Forty-two deleterious germline mutations were identified in 21 genes of 34 patients, including 18 (18.2%) BRCA1 or BRCA2 mutations, 3 (3%) TP53 mutations, 5 (5.1%) DNA mismatch repair gene mutations, 1 (1%) CDH1 mutation, 6 (6.1%) Fanconi anemia pathway gene mutations, and 9 (9.1%) mutations in other genes. Of seven patients who carried mutations in more than one gene, 4 were BRCA1/2 mutation carriers, and their average onset age was much younger than patients with only BRCA1/2 mutations. Almost all identified high-penetrance gene mutations in those families fulfill the typical phenotypes of hereditary cancer syndromes listed in the National Comprehensive Cancer Network (NCCN) guidelines, except two TP53 and three mismatch repair gene mutations. Furthermore, functional studies of MSH3 germline mutations confirmed the association between MSH3 mutation and tumorigenesis, and segregation analysis suggested antagonism between BRCA1 and MSH3. We also identified a lot of low-penetrance gene mutations. Although the clinical significance of those newly identified low-penetrance gene mutations has not been fully appreciated yet, these new findings do provide valuable epidemiological information for the future studies. Together, these findings highlight the importance of genetic testing based on NCCN guidelines and a multi-gene analysis using NGS may be a supplement to traditional genetic counseling.


Chinese Journal of Cancer | 2017

Tumor microenvironment: driving forces and potential therapeutic targets for breast cancer metastasis

Hong-Yan Xie; Zhi-Min Shao; Da-Qiang Li

Distant metastasis to specific target organs is responsible for over 90% of breast cancer-related deaths, but the underlying molecular mechanism is unclear. Mounting evidence suggests that the interplay between breast cancer cells and the target organ microenvironment is the key determinant of organ-specific metastasis of this lethal disease. Here, we highlight new findings and concepts concerning the emerging role of the tumor microenvironment in breast cancer metastasis; we also discuss potential therapeutic intervention strategies aimed at targeting components of the tumor microenvironment.


Oncotarget | 2017

RBR-type E3 ubiquitin ligase RNF144A targets PARP1 for ubiquitin-dependent degradation and regulates PARP inhibitor sensitivity in breast cancer cells

Ye Zhang; Xiao-Hong Liao; Hong-Yan Xie; Zhi-Min Shao; Da-Qiang Li

Poly(ADP-ribose) polymerase 1 (PARP1), a critical DNA repair protein, is frequently upregulated in breast tumors with a key role in breast cancer progression. Consequently, PARP inhibitors have emerged as promising therapeutics for breast cancers with DNA repair deficiencies. However, relatively little is known about the regulatory mechanism of PARP1 expression and the determinants of PARP inhibitor sensitivity in breast cancer cells. Here, we report that ring finger protein 144A (RNF144A), a RING-between-RING (RBR)-type E3 ubiquitin ligase with an unexplored functional role in human cancers, interacts with PARP1 through its carboxy-terminal region containing the transmembrane domain, and targets PARP1 for ubiquitination and subsequent proteasomal degradation. Moreover, induced expression of RNF144A decreases PARP1 protein levels and renders breast cancer cells resistant to the clinical-grade PARP inhibitor olaparib. Conversely, knockdown of endogenous RNF144A increases PARP1 protein levels and enhances cellular sensitivity to olaparib. Together, these findings define RNF144A as a novel regulator of PARP1 protein abundance and a potential determinant of PARP inhibitor sensitivity in breast cancer cells, which may eventually guide the optimal use of PARP inhibitors in the clinic.


Cancer Research | 2018

Cancer-Associated MORC2-Mutant M276I Regulates an hnRNPM-Mediated CD44 Splicing Switch to Promote Invasion and Metastasis in Triple-Negative Breast Cancer

Fang-Lin Zhang; Jin-Ling Cao; Hong-Yan Xie; Rui Sun; Li-Feng Yang; Zhi-Ming Shao; Da-Qiang Li

Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, with a high propensity for distant metastasis and limited treatment options, yet its molecular underpinnings remain largely unknown. Microrchidia family CW-type zinc finger 2 (MORC2) is a newly identified chromatin remodeling protein whose mutations have been causally implicated in several neurologic disorders. Here, we report that a cancer-associated substitution of methionine to isoleucine at residue 276 (M276I) of MORC2 confers gain-of-function properties in the metastatic progression of TNBC. Expression of mutant MORC2 in TNBC cells increased cell migration, invasion, and lung metastasis without affecting cell proliferation and primary tumor growth compared with its wild-type counterpart. The M276I mutation enhanced binding of MORC2 to heterogeneous nuclear ribonucleoprotein M (hnRNPM), a component of the spliceosome machinery. This interaction promoted an hnRNPM-mediated splicing switch of CD44 from the epithelial isoform (CD44v) to the mesenchymal isoform (CD44s), ultimately driving epithelial-mesenchymal transition (EMT). Knockdown of hnRNPM reduced the binding of mutant MORC2 to CD44 pre-mRNA and reversed the mutant MORC2-induced CD44 splicing switch and EMT, consequently impairing the migratory, invasive, and lung metastatic potential of mutant MORC2-expressing cells. Collectively, these findings provide the first functional evidence for the M276I mutation in promoting TNBC progression. They also establish the first mechanistic connection between MORC2 and RNA splicing and highlight the importance of deciphering unique patient-derived mutations for optimizing clinical outcomes of this highly heterogeneous disease.Significance: A gain-of-function effect of a single mutation on MORC2 promotes metastasis of triple-negative breast cancer by regulating CD44 splicing. Cancer Res; 78(20); 5780-92. ©2018 AACR.


Cancer Research | 2018

FBXO22 Possesses Both Protumorigenic and Antimetastatic Roles in Breast Cancer Progression

Rui Sun; Hong-Yan Xie; Jin-Xian Qian; Yan-Ni Huang; Fan Yang; Fang-Lin Zhang; Zhi-Ming Shao; Da-Qiang Li

The molecular underpinnings behind malignant progression of breast cancer from a localized lesion to an invasive and ultimately metastatic disease are incompletely understood. Here, we report that F-box only protein 22 (FBXO22) plays a dual role in mammary tumorigenesis and metastasis. FBXO22 was upregulated in primary breast tumors and promoted cell proliferation and colony formation in vitro and xenograft tumorigenicity in vivo Surprisingly, FBXO22 suppressed epithelial-mesenchymal transition (EMT), cell motility, and invasiveness in vitro and metastatic lung colonization in vivo Clinical data showed that expression levels of FBXO22 were associated with favorable clinical outcomes, supporting the notion that metastasis, rather than primary cancer, is the major determinant of the mortality of patients with breast cancer. Mechanistic investigations further revealed that FBXO22 elicits its antimetastatic effects by targeting SNAIL, a master regulator of EMT and breast cancer metastasis, for ubiquitin-mediated proteasomal degradation in a glycogen synthase kinase 3β phosphorylation-dependent manner. Importantly, expression of SNAIL rescued FBXO22-mediated suppression of EMT, cell migration, and invasion. A patient-derived tryptophan-to-arginine mutation at residue 52 (W52R) within the F-box domain impaired FBXO22 binding to the SKP1-Cullin1 complex and blocked FBXO22-mediated SNAIL degradation, thus abrogating the ability of FBXO22 to suppress cell migration, invasion, and metastasis. Collectively, these findings uncover an unexpected dual role for FBXO22 in mammary tumorigenesis and metastatic progression and delineate the mechanism of an oncogenic mutation of FBXO22 in breast cancer progression.Significance: These findings highlight the paradoxical roles of FBXO22 in breast cancer, as it promotes breast tumor cell proliferation but prevents EMT and metastasis. Cancer Res; 78(18); 5274-86. ©2018 AACR.


Cancer Research | 2018

PHF5A Epigenetically Inhibits Apoptosis to Promote Breast Cancer Progression

Yi-Zi Zheng; Meng-Zhu Xue; H. Shen; Xiao-Guang Li; Ding Ma; Yue Gong; Yi-Rong Liu; Feng Qiao; Hong-Yan Xie; Bi Lian; W Sun; Hai-Yun Zhao; Ling Yao; Wen-Jia Zuo; Da-Qiang Li; Peng Wang; Xin Hu; Zhi-Ming Shao

Alternative splicing (AS) and its regulation play critical roles in cancer, yet the dysregulation of AS and its molecular bases in breast cancer development have not yet been elucidated. Using an in vivo CRISPR screen targeting RNA-binding proteins, we identified PHD finger protein 5A (PHF5A) as a key splicing factor involved in tumor progression. PHF5A expression was frequently upregulated in breast cancer and correlated with poor survival, and knockdown of PHF5A significantly suppressed cell proliferation, migration, and tumor formation. PHF5A was required for SF3b spliceosome stability and linked the complex to histones, and the PHF5A-SF3b complex modulated AS changes in apoptotic signaling. In addition, expression of a short truncated FAS-activated serine/threonine kinase (FASTK) protein was increased after PHF5A ablation and facilitated Fas-mediated apoptosis. This PHF5A-modulated FASTK-AS axis was widely present in breast cancer specimens, particularly those of the triple-negative subtype. Taken together, our findings reveal that PHF5A serves as an epigenetic suppressor of apoptosis and thus provides a mechanistic basis for breast cancer progression and may be a valuable therapeutic target.Significance: This study provides an epigenetic mechanistic basis for the aggressive biology of breast cancer and identifies a translatable therapeutic target. Cancer Res; 78(12); 3190-206. ©2018 AACR.


Cancer Medicine | 2018

Epigenetic silencing of RNF144A expression in breast cancer cells through promoter hypermethylation and MBD4

Ye Zhang; Yin-Long Yang; Fang-Lin Zhang; Xiao-Hong Liao; Zhi-Min Shao; Da-Qiang Li

Emerging evidence shows that ring finger protein 144A (RNF144A), a poorly characterized member of the Ring‐between‐Ring (RBR) family of E3 ubiquitin ligases, is a potential tumor suppressor gene. However, its regulatory mechanism in breast cancer remains undefined. Here, we report that RNF144A promoter contains a putative CpG island and the methylation levels of RNF144A promoter are higher in primary breast tumors than those in normal breast tissues. Consistently, RNF144A promoter methylation levels are associated with its transcriptional silencing in breast cancer cells, and treatment with DNA methylation inhibitor 5‐Aza‐2‐deoxycytidine (AZA) reactivates RNF144A expression in cells with RNF144A promoter hypermethylation. Furthermore, genetic knockdown or pharmacological inhibition of endogenous methyl‐CpG‐binding domain 4 (MBD4) results in increased RNF144A expression. These findings suggest that RNF144A is epigenetically silenced in breast cancer cells by promoter hypermethylation and MBD4.


Breast Cancer Research | 2018

Correction to: Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer

Xin-Zhong Chang; Da-Qiang Li; Yifeng Hou; Wu J; Jinsong Lu; Genhong Di; Wei Jin; Zhou-Luo Ou; Zhenzhou Shen; Zhi-Ming Shao

After the publication of this work [1] an error in Fig. 1c was brought to our attention: the Western blots for PRDX6 and β-actin were similar to those shown in lanes 5-6 of Fig. 4g. To verify these findings, we have repeated this experiment and the results are shown in a new Fig. 1c below. The repeated experimental results are consistent with the previously reported findings in the original study [1] and the functional role for PRDX6 in malignant progression of human cancer including breast cancer has been widely documented and recognized in numerous other studies [2]. We apologize for the error. However, this correction does not affect the conclusions of the article.


Oncotarget | 2015

Basal and therapy-driven hypoxia-inducible factor-1α confers resistance to endocrine therapy in estrogen receptor-positive breast cancer

Xiaoqing Jia; Qi Hong; Li Lei; Da-Qiang Li; Jianwei Li; Miao Mo; Yujie Wang; Zhimin Shao; Zhenzhou Shen; Jingyi Cheng; Guangyu Liu


Archive | 2016

Additional file 2: Figure S1. of Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer

Yi-Rong Liu; Yi Zhou Jiang; Xiao-En Xu; Ke Da Yu; Xi Jin; Xin Hu; Wen-Jia Zuo; Shuang Hao; Wu J; Guangyu Liu; Hong Di; Da-Qiang Li; Xiang-Huo He; W Hu; Zhi-Ming Shao

Collaboration


Dive into the Da-Qiang Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge