Dabney K. Johnson
Oak Ridge National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dabney K. Johnson.
Mammalian Genome | 2008
Elissa J. Chesler; Darla R. Miller; Lisa R. Branstetter; Leslie D. Galloway; Barbara L. Jackson; Vivek M. Philip; Brynn H. Voy; Cymbeline T. Culiat; David W. Threadgill; Robert W. Williams; Gary A. Churchill; Dabney K. Johnson; Kenneth F. Manly
Complex traits and disease comorbidity in humans and in model organisms are the result of naturally occurring polymorphisms that interact with each other and with the environment. To ensure the availability of resources needed to investigate biomolecular networks and systems-level phenotypes underlying complex traits, we have initiated breeding of a new genetic reference population of mice, the Collaborative Cross. This population has been designed to optimally support systems genetics analysis. Its novel and important features include a high level of genetic diversity, a large population size to ensure sufficient power in high-dimensional studies, and high mapping precision through accumulation of independent recombination events. Implementation of the Collaborative Cross has been ongoing at the Oak Ridge National Laboratory (ORNL) since May 2005. Production has been systematically managed using a software-assisted breeding program with fully traceable lineages, performed in a controlled environment. Currently, there are 650 lines in production, and close to 200 lines are now beyond their seventh generation of inbreeding. Retired breeders enter a high-throughput phenotyping protocol and DNA samples are banked for analyses of recombination history, allele drift and loss, and population structure. Herein we present a progress report of the Collaborative Cross breeding program at ORNL and a description of the kinds of investigations that this resource will support.
nuclear science symposium and medical imaging conference | 1998
Michael J. Paulus; Hamed Sari-Sarraf; Shaun S. Gleason; M. Bobrek; J.S. Hicks; Dabney K. Johnson; J.K. Behel; L.H. Thompson; W.C. Allen
Two versions of a new high-resolution X-ray computed tomography system are being developed to screen mutagenized mice in the Oak Ridge National Laboratory Mammalian Genetics Research Facility. The first prototype employs a single-pixel CdZnTe detector with a pinhole collimator operating in pulse counting mode. The second version employs a phosphor screen/CCD detector operating in current mode. The major system hardware includes a low-energy X-ray tube, two linear translation stages and a rotational stage. For the single-pixel detector, image resolution is determined by the step size of the detector stage; preliminary images have been acquired at 100 /spl mu/m and 250 /spl mu/m resolutions. The resolution of the phosphor screen detector is determined by the modulation transfer function of the phosphor screen; images with resolutions approaching 50 /spl mu/m have been acquired. The system performance with the two detectors is described and recent images are presented.
Neuroscience Letters | 1998
Jean-Marc Fritschy; Dabney K. Johnson; Hanns Möhler; Uwe Rudolph
The ability of neurons to display more than a single GABA(A)-receptor subtype per cell requires intricate targeting mechanisms. Analysis by confocal laser scanning microscopy revealed that the alpha2- and alpha5-subunits differed strikingly in their subcellular distribution in hippocampal pyramidal cells and olfactory bulb granule cells, while the distribution of the gamma2-subunit was rather uniform. In mutant mice lacking the alpha5-subunit gene due to a chromosomal deletion, the absence of the alpha5-subunit was accompanied by a corresponding decrease of the gamma2-subunit immunoreactivity. In striking contrast, the subcellular distribution of the alpha2-subunit was unchanged in these mutant mice. These findings indicate that the assembly of distinct GABA(A)-receptor subtypes in the same neuron is regulated independently. Furthermore, the alpha-subunit is a prime candidate for providing domains which direct subcellular targeting.
Mammalian Genome | 2005
Feng Ding; Yelena Prints; Madhu S Dhar; Dabney K. Johnson; Carmen Garnacho-Montero; Robert D. Nicholls; Uta Francke
Prader–Willi syndrome (PWS) is a neurobehavioral disorder caused by the lack of paternal expression of imprinted genes in the human chromosome region 15q11–13. Recent studies of rare human translocation patients narrowed the PWS critical genes to a 121-kb region containing PWCR1/HBII-85 and HBII-438 snoRNA genes. The existing mouse models of PWS that lack the expression of multiple genes, including Snrpn, Ube3a, and many intronic snoRNA genes, are characterized by 80%–100% neonatal lethality. To define the candidate region for PWS-like phenotypes in mice, we analyzed the expression of several genetic elements in mice carrying the large radiation-induced p30PUb deletion that includes the p locus. Mice having inherited this deletion from either parent develop normally into adulthood. By Northern blot and RT-PCR assays of brain tissue, we found that Pwcr1/MBII-85 snoRNAs are expressed normally, while MBII-52 snoRNAs are not expressed when the deletion is paternally inherited. Mapping of the distal deletion breakpoint indicated that the p30PUb deletion includes the entire MBII-52 snoRNA gene cluster and three previously unmapped EST sequences. The lack of expression of these elements in mice with a paternal p30PUb deletion indicates that they are not critical for the neonatal lethality observed in PWS mouse models. In addition, we identified MBII-436, the mouse homolog of the HBII-436 snoRNA, confirmed its imprinting status, and mapped it outside of the p30PUb deletion. Taking together all available data, we conclude that the lack of Pwcr1/MBII-85 snoRNA expression is the most likely cause for the neonatal lethality in PWS model mice.
Neuroscience | 1997
Jean-Marc Fritschy; Dietmar Benke; Dabney K. Johnson; Hanns Möhler; Uwe Rudolph
The mechanisms governing the assembly of alpha-, beta- and gamma-subunits to form GABAA-receptors are poorly understood. Here, we report that the alpha-subunit is essential for receptor assembly. In mice homozygous for a deletion on chromosome 7 spanning the alpha 5- and gamma 3-subunit genes, zolpidem-insensitive benzodiazepine binding sites, corresponding to GABAA-receptors containing the alpha 5-subunit, were absent in the hippocampus. This loss of alpha 5-GABAA-receptor binding was also apparent as a 21% decrease in the total number of benzodiazepine binding sites in the hippocampus. In addition, immunoreactivity for the beta 2,3- and gamma 2-subunit was decreased exclusively in neurons which normally express the alpha 5-subunit, such as olfactory bulb granule cells and hippocampal pyramidal cells. In other brain regions of the mutants, the beta 2,3- and gamma 2-subunit staining was unaffected. Controls included two lines of mice homozygous for a shorter chromosomal deletion, that either included or excluded the gamma 3-subunit gene. These two lines were indistinguishable with regard to numbers of benzodiazepine binding sites and levels alpha 5-, beta 2,3- and gamma 2-subunit immunoreactivity, indicating that the lack of gamma 3-subunit gene did not contribute to the observed deficit in receptor formation. These results demonstrate that the absence of the alpha 5-subunit gene prevents the formation of the entire respective receptor complex in adult mouse brain. Thus, the alpha-subunit, unlike the gamma 2-subunit, might play a major role in the assembly or targeting of GABAA-receptor complexes.
BMC Genomics | 2005
Edward J. Michaud; Cymbeline T. Culiat; Mitchell L Klebig; Paul E Barker; K.T. Cain; Debra J Carpenter; Lori L Easter; Carmen M. Foster; Alysyn W Gardner; Zhishan Guo; Kay J Houser; L.A. Hughes; Marilyn K. Kerley; Zhaowei Liu; Robert E. Olszewski; Irina Pinn; Ginger D Shaw; Sarah G. Shinpock; Ann M. Wymore; Eugene M. Rinchik; Dabney K. Johnson
BackgroundAnalysis of an allelic series of point mutations in a gene, generated by N-ethyl-N-nitrosourea (ENU) mutagenesis, is a valuable method for discovering the full scope of its biological function. Here we present an efficient gene-driven approach for identifying ENU-induced point mutations in any gene in C57BL/6J mice. The advantage of such an approach is that it allows one to select any gene of interest in the mouse genome and to go directly from DNA sequence to mutant mice.ResultsWe produced the Cryopreserved Mutant Mouse Bank (CMMB), which is an archive of DNA, cDNA, tissues, and sperm from 4,000 G1 male offspring of ENU-treated C57BL/6J males mated to untreated C57BL/6J females. Each mouse in the CMMB carries a large number of random heterozygous point mutations throughout the genome. High-throughput Temperature Gradient Capillary Electrophoresis (TGCE) was employed to perform a 32-Mbp sequence-driven screen for mutations in 38 PCR amplicons from 11 genes in DNA and/or cDNA from the CMMB mice. DNA sequence analysis of heteroduplex-forming amplicons identified by TGCE revealed 22 mutations in 10 genes for an overall mutation frequency of 1 in 1.45 Mbp. All 22 mutations are single base pair substitutions, and nine of them (41%) result in nonconservative amino acid substitutions. Intracytoplasmic sperm injection (ICSI) of cryopreserved spermatozoa into B6D2F1 or C57BL/6J ova was used to recover mutant mice for nine of the mutations to date.ConclusionsThe inbred C57BL/6J CMMB, together with TGCE mutation screening and ICSI for the recovery of mutant mice, represents a valuable gene-driven approach for the functional annotation of the mammalian genome and for the generation of mouse models of human genetic diseases. The ability of ENU to induce mutations that cause various types of changes in proteins will provide additional insights into the functions of mammalian proteins that may not be detectable by knockout mutations.
Journal of Cell Biology | 2008
Jun Wu; Hyekyung P. Cho; David B. Rhee; Dabney K. Johnson; John R. Dunlap; Yie Liu; Yisong Wang
Centrosome duplication is tightly controlled in coordination with DNA replication. The molecular mechanism of centrosome duplication remains unclear. Previous studies found that a fraction of human proline-directed phosphatase Cdc14B associates with centrosomes. However, Cdc14Bs involvement in centrosome cycle control has never been explored. Here, we show that depletion of Cdc14B by RNA interference leads to centriole amplification in both HeLa and normal human fibroblast BJ and MRC-5 cells. Induction of Cdc14B expression through a regulatable promoter significantly attenuates centriole amplification in prolonged S phase–arrested cells and proteasome inhibitor Z-L3VS–treated cells. This inhibitory function requires centriole-associated Cdc14B catalytic activity. Together, these results suggest a potential function for Cdc14B phosphatase in maintaining the fidelity of centrosome duplication cycle.
IEEE Transactions on Nuclear Science | 1999
Shaun S. Gleason; Hamed Sari-Sarraf; Michael J. Paulus; Dabney K. Johnson; Stephen J. Norton; Mongi A. Abidi
A new X-ray computed tomography (CT) system is being developed at Oak Ridge National Laboratory to image laboratory mice for the purpose of rapid phenotype screening and identification. One implementation of this CT system allows simultaneous capture of several sets of sinogram data, each having a unique X-ray energy distribution. The goals of this paper are to (1) identify issues associated with the reconstruction of this energy-dependent data and (2) suggest preliminary approaches to address these issues. Due to varying numbers of photon counts within each set, both traditional (filtered backprojection, or FBP) and statistical (maximum likelihood, or ML) tomographic image reconstruction techniques have been applied to the energy-dependent sinogram data. Results of reconstructed images using both algorithms on sinogram data (high- and low-count) are presented. Also, tissue contrast within the energy-dependent images is compared to known X-ray attenuation coefficients of soft tissue (e.g. muscle, bone, and fat).
Mutation Research | 1998
Liane B. Russell; Patriacia R. Hunsicker; Dabney K. Johnson; Michael D. Shelby
The cancer chemotherapy agent, and topoisomerase-II inhibitor, etoposide (VP-16) produced both recessive mutations at specific loci and dominants at other loci with peak frequencies in primary spermatocytes, a cell type in which the topo-II gene has been shown to be activated. Etoposide thus differs from all other chemicals whose germ-cell-stage specificity has been analyzed. No effects of etoposide exposure of spermatogonial stem cells ( approximately 15, 000 offspring scored) were detectable by either mutagenicity or productivity endpoints. The significant mutagenic response that followed exposure of poststem-cell stages ( approximately 25,000 offspring scored) showed a clear peak, with three of four specific-locus mutants, and three of four dominant mutants conceived during weeks 4 or 5 (days 22-35) post-injection, a period that also encompassed the dominant-lethal peak. For this period, the induced specific-locus rate (with 95% confidence limits) at a weighted-average exposure of 75.1 mg etop/kg was 59.5 (14.6, 170. 9)x10-6/locus. At least 3 of the 4 specific-locus mutations were deletions, paralleling findings with etoposide or analogs in other test systems where a recombinational origin of the deletions has been suggested. Because, unlike other chemicals that induce deletions in male germ cells, etoposide is effective in stages normally associated with recombinational events, it will be of interest to determine whether this chemical can affect meiotic recombination.
Mammalian Genome | 1999
Mitchell Walkowicz; Yonggang Ji; Xiaojia Ren; Bernhard Horsthemke; Liane B. Russell; Dabney K. Johnson; Eugene M. Rinchik; Robert D. Nicholls; Lisa Stubbs
Abstract. The juvenile development and fertility-2 (jdf2) locus, also called runty-jerky-sterile (rjs), was originally identified through complementation studies of radiation-induced p-locus mutations. Studies with a series of ethylnitrosourea (ENU)-induced jdf2 alleles later indicated that the pleiotropic effects of these mutations were probably caused by disruption of a single gene. Recent work has demonstrated that the jdf2 phenotype is associated with deletions and point mutations in Herc2, a gene encoding an exceptionally large guanine nucleotide exchange factor protein thought to play a role in vesicular trafficking. Here we describe the molecular characterization of a collection of radiation- and chemically induced jdf2/Herc2 alleles. Ten of the 13 radiation-induced jdf2 alleles we studied are deletions that remove specific portions of the Herc2 coding sequence; DNA rearrangements were also detected in two additional mutations. Our studies also revealed that Herc2 transcripts are rearranged, not expressed, or are present in significantly altered quantities in animals carrying most of the jdf2 mutations we analyzed, including six independent ENU-induced alleles. These data provide new molecular clues regarding the wide range of jdf2 and p phenotypes that are expressed by this collection of recently generated and classical p-region mutations.